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Background

Towards general and generative intelligence, scaling up model / data /
computation based on Transformer is a mainstream and effective pathway.

Focus Shift 1: Discriminative => Generative Current mainstream path

Based on the Transformer
architecture, scaling model size ,
training data / computation, and

test computation.

R /
RE 7
/ |

Focus Shift 2: Specialized => General

Data / Model size / Computation
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> Background

The model scale and input/output length in generative intelligence
research and applications have increased significantly.

—— 2018 - 2025 . . 2025 Losh Gemini 1.5 Pro
1e13 5 orders of magnitude increase —e— OpenAl '
. . —@— Meta Al
in parameter size [1] = e~ Google ool
d g) Turbo Ilama3.1
5|
.Uu) \:b % 10 2018-2024 GPT;
CILJ 2018 % a 3 orders of Gemini 1.0
‘ c
+ R - H H H
1e8 | @ Sl o magnitude increase in the
g b L 104} .
S P S supported input length /.
o S
] lla
103 L
Example: G
162 DeepSeek-R1 [2] (year 2025): 671B params, open source. 2018 2019 2020 2021 2022 2023 2024
— ; Release Time
Publication date
[1] Villalobos et al. “Machine Learning Model Sizes and the Parameter Gap.” arXiv 2022. [4] Achiam, Josh, et al. "Gpt-4 technical report.” arXiv 2023.
[2] Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in lims via reinforcement learning.arXiv 2025. [5] Reid, Machel, et al. "Gemini 1.5: Unlocking multimodal
[3] Esser, Patrick et al., Scaling rectified flow transformers for high-resolution image synthesis, ICML 2024. understanding across millions of tokens of context.” arXiv 2024.
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Background

Application demands e.g., multimodal input, advanced tasks, may
continually drive increases in model scale and input/output length.

Multimodal Input Advanced Tasks

Agentic pipelines for broad applications require

Modeling multimodal data may push the scalin
g yP J stronger models and longer input/output contexts.

saturation point of model size higher.

Multi-Agent Collaboration
~100B —> ~1000B ? Memory . ]

Single-

texts texts, images, videos, audios, ... Planning
Agent
Supporting high-resolution images and longer videos Action
requires extended input/output contexts.
e w Test-time compute scaling (especially CoT) for

reasoning require longer input/output contexts.

oy esowy
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Application Challenge

This scaling of the model size and input/output poses challenges for
efficient inference across platforms and application scenarios.

Model size, input/output length f Z> Inference cost (time, storage, energy)f

’z Human < ' : 1Al I— &Wcrld
i e

Cloud ——7————————— —
Requirements or constraints of application scenarios and platforms

High Low Small Low Energy
Throughput Latency Storage Consumption

Deployment
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Application Challenge

Time to first token (TTFT) and time per output token (TPOT) w.r.t. model size
and input/output lengths, estimated with three costs (compute, memory
access and memory footprint) of the model spec and device spec.

Different #Prefill Tokens using Llama-3.1-8B (BS=1) Different Models with 4k Input Tokens (BS=1)
Compute(GFLOPS) ==®==MemoryAccess(GB) ==@=MemoryNeed(GB) Compute(GFLOPS) ==@==MemoryAccess(GB) ==@=MemoryNeed(GB)
37465.4x,
» 100000 596PFLOPS 1000 281.7x,
é 10000 533.5, 3 3.5PFLOPS | 196.7x,
~ 1000 156TB = 1qp 1.6TB
= o
Q 100 g 84.4x,
§ 10 26.2x, ; 10 769GB
= 1 401GB X
g 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1024k g 1
o =
p= Input Token Length o Llama-32 Llama-32 Llama-3.1 Llama-3.1 Llama-3.1
z -18B 38 -88 -708 -4058
Compute Memory VRAM - - Compute Memory VRAM - -
1K token 15.9 TFLOPs 29.2 GB 15.3GB 1xA100 73~170 ms 10~24 ms 1B Model 124 TFLOPs  19.2 GB 15.3 GB 1xA100 57~132ms 1.8~4.3 ms

1M token 597 PFLOPs 15.6 TB 401 GB  6xA100 7.6~17.7 min 32~75ms 405B Model 3.5 PFLOPs 1.6 TB 769 GB 10xA100 1.6~3.7s 55~128 m

*TTFT is estimated using Compute Amount / (Peak OPS x compute-util), as prefill is computation-bounded. We assume a compute utilization range 30%~70% to report the estimation.
TPOT is estimated using Memory Access / (Bandwidth x bandwidth-util), as decoding is memory-bounded. We assume a bandwidth utilization range 30%~70% to report the estimation.
A100 Peak Compute Performance (FP16) = 312 TFLOPS; Peak Bandwidth =2 TB/s
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Application Challenge

Per-request energy consumption w.r.t. model size and input/output lengths,

estimated with actual latency measurement, device & schedule
assumptions, and device spec.

Compa
ny;
Host
(Device)
GPT-4.1
nano OpenAl;
Azure
G':nTi:;” (H2008
H100)
GPT-4.1
LLaMA-
3.1-8B
Meta;
LLaMA- AWS
3.1-70B (H200&
H100)
LLaMA-
3.1-405B

Apr,
2025

Jul,
2024

energy
consumption

(100in-3000ut)

(Wh)

0.104+0.04

0.4240.20

0.9240.50 j

0.1040.02

1.10+£0.13 j
1.99+0.32 )

energy

consumption
(10kin-1.5kout)

0.451+0.21 j

0.6010.09

11.63%£1.39 )

20.76+1.80 j

Jegham et al. made an attempt to estimate the
environmental footprint of LLM inference at per-
prompt level of commercial Al providers, based on
assumptions on the infrastructure and scheduling.

[1] Jegham, Nidhal, et al. "How hungry is ai? benchmarking energy, water, and carbon footprint of llm inference." arXiv preprint arXiv:2505.09598 (2025).
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Application Challenge

Overall energy consumption, estimated with reported usage, device &
schedule assumptions, and device spec.

A rough estimation result: Assuming a total of 772 billion
queries (estimated with OpenAl 2024 report and the
usage growth pattern, assume 80% short queries)

annually in 2025, GPT-4o0 inference require

approximately 4x10'1Wh, exceeding the total electricity

Jegham et al. made an attempt to estimate the
environmental footprint of LLM inference at per-
prompt level of commercial Al providers, based on
assumptions on the infrastructure and scheduling.

consumption of 35,000 U.S. residential households.

[1] Jegham, Nidhal, et al. "How hungry is ai? benchmarking energy, water, and carbon footprint of llm inference." arXiv preprint arXiv:2505.09598 (2025).
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> Model: Architecture of LLMs

« Most LLMs are based on Transformer architecturel'l, consisting of an
input embedding layer, Transformer blocks, and a decoding layer.

. >(+
* A Transformer block consists of: | 32 |
e Attention-Linear (transform for Q, K, V, O) | . | Eg@;’of;?ggﬁ)
. ; )
e | Multi-Head Self-Attention | FCl | layer
f
 Feed Forward Network (FFN) LayerNorm
Residual ¥
* Layer Norm Stream 3
= softmax(Q—KT)V
| Multi-head Self-Attenton | Vi
FL) KA VA where Q,K,V € RNxd
Wa Wk Wy Attention
T 1 L) layer
LayerNorm
A
| 1 |Glove| GEM|N]LP] N tokens

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
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Attention Layer

The

idea of attention module is to
establish token-to-token

“attention” relationships within

a sequence.

This relationship is modeled
by an attention matrix,
where each row represents
one token’s attention
distribution to previous
tokens (sum up to 1).

Causal attention mask:
Each token only has positive
attention to previous tokens

Attention Layer

X!

o e e e e e e

Calculation of each attention head:
* Q=XWyK=XWg;V=XW,tomapX €
RV*P to Q,K,V € RN*4

 Calculate inner product S = QKT, apply mask
and softmax to get the attention matrix A =

softmax(S + M) € RN*VN
« X' = AV to get the output
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» Generative Modeling Algo: Autoregressive Model

* Contemporary LLMs are generative models that uses the “autoregressive”
generative modeling method.

* The core task of generative modeling is to learn a parametrized model pg(x)

from observed data {x(i)}livzl, which in some sense capture the unknown real

distribution of data py,,(x), and can do stochastic sampling (i.e., sample
generation) & probabilistic inference (e.g., likelihood estimation).

* Autoregressive models are a family of generative modeling methods that
models the joint probability of a token sequence x = [x4, x5, ..., x,,] as a product of
conditional probability distributions, each conditioned on the preceding tokens:

n
PO, g, ey 2) = pC) | [P0 = iy, x100)
=2
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Sampling Process of LLMs

LLMs are autoregressive models that uses one transformer to model the

conditional distributions. _

* Denoting the vocabulary set as |V|, the transformer maps the token sequence x.; € V™! to
a sequence of logits [ € RE—D*IVI where the logits I[i — 1] € RIY! corresponding to x;_; is
regarded as the categorical distribution’s parameter of x;.

The KV cache design for sampling from causal LLMs:

* At first glance, in each step of autoregressive sampling: x; ~ pg(x<;), the model forward
process has O((i —1)?) computation complexity. Thus the overall sampling process
(assume N steps) has 0(N3) complexity.

* Most contemporary LLMs choose to use causal attention: The calculation of features of x;
only attends to x.;. In this way, newly sampled tokens x.; don’t influence the features
corresponding to x;.

* This enables us to “cache” already calculated features (specifically, the Key and Value) of
preceding tokens to avoid recalculating their features, thus reduce overall computation
complexity of sampling to O(N?).
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Sampling Process of LLMs

After applying the KV cache technique, a typical LLM inference/sampling*
process can be divided into two stages:

- Prefilling Stage: The LLM calculates and saves the KV cache of the initial
input tokens, and samples the first output token.

« Decoding Stage: The LLM samples the output tokens one by one with the KV
cache, and in the meantime updates the KV cache.

Output

t
E GPT.})
t

Input

recite the first law $

*In this tutorial, the terms “inference” and “sampling” will be used interchangeably. Although they differ in the context of probabilistic modeling, here they both refer to
either a single sampling step—i.e., a forward pass of the model—or the overall sampling process, depending on context.
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>  Attention Computation in Prefill/Decode Stages

Prefill Decode
———————————————————————————————————————— N \l ,/—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_\\ 1
[ Attention Layer 1, { —T Attention Layer 1,
: Wi K :I e I W, K-ICathe K :| Wo
I /! | !
Who | I W ¥ | W w | LE I
won : @ Q A Vv :I 1 @ ?.? :I
? I |I ! _g- |I L.
- 4 1 1 "
| S e —— / 1 [
] S x|y R i
Jack | | T }..,__, ____________________ /: _______ l --------
...................................................... "

The LLM calculates and saves the KV
cache of the initial input tokens, and
samples the first output token.

Calculate N query, key, value;

calculate NxN-sized attention matrix A.

The LLM samples the output tokens
one by one with the KV cache, and in

the meantime updates the KV cache.

Calculate 1 query, key, value; read N
key, value from KV cache; calculate

1Xx(N + 1)-sized attention matrix A.
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> Software, Hardware, Instruction

Let’s first have an overview of the most basic terms of interest:

* What is a computing hardware? Hardware consists of

microelectronic components that transfer and transform

electrical signals. Through these physical operations,
hardware realizes high-level abstractions, that is
executing functionalities described by instructions,
such as storing, transferring, and transforming data.

* What is software? All software -- no matteritis an OS, a
game, or an Al model’s inference engine -- is a structured
pack of instructions and data.

* Instructions are the interface between software and
hardware. Instruction Set Architecture (ISA) defines this
instruction interface: what instructions are available, how
they are encoded and executed.

[1] https://en.wikipedia.org/wiki/Instruction_set_architecture

Instruction Set Architecture (ISA)
Define the instruction interface of a device

Example 1: CPU ISA defines instruction format and meaning. ["!
Typical ISA for CPU includes MIPS, RISC-V, x86, x86-64 (amd64), etc.

MIPS32 Add Immediate Instruction

-oooo1 00010’ 0000000101011110
{OP Code | Addr1; Addr2| Immediate value |

Equivalent mnemonic: addi

Example 2: NVIDIA Ampere GPU architecture has compute
capability sm80, which indicates its supported certain
instructions (ISA) and some microarchitectural features

Page 22



A Conceptual Layered Overview

Runtime Lib Toolchain OS / Driver

Software Interact with Compile instructions Orchestrate resources or provide
device at runtime for host and device low-level resource-access API

Hardware System
Host Machine Accelerator Device(s)

(CPU & Memory & ...) Al Chip Off-Chip Memory

—_—— e ———
Accelerator Chip

Microarchitecture
Define functional modules (controller, computation,
memory) and how they “connect’: (1) control path: Physical Design /
how the controller parse the instruction and distribute Implementation
control information; (2) data path: how modules
parse and pass data based on control information

Functional Modules
Arithmetic units, controller, cache, ...

Circuits
Logic circuits, memory cells constructed by transistors, interconnects, capacitors, ...

Toolchain produces hardware-specific instructions.
Runtime library manages program execution, send
instruction to device, transfer data to/from device, and
optionally call toolchain dynamically.

A hardware system consists of host, accelerator
devices, and their interconnects

Accelerator’s Instruction Set
Architecture (ISA)

Define the instruction interface of
the Al accelerator device

A microarchitecture design organizes modules to
implement the accelerator’s ISA

A functional module combines circuits to perform
certain functions

Basic logic and memory elements




>

A Composition Overview

» A system primarily consists of the following components:

PCle Bandwidth: ~100GB/s Data cache
e . during
Global control L Host ./ Al Chip computation
CPU~ T A he o e A !
(Capacity: The total amount of data |4 ,* : On-ChIp cache SRAM \ Capacity: tens of MB
that @ memory component can hold. I / ' _ ' Bandwidth: 10—
4 Off-chi ' | Weight cache Input/Output cache__]|-: \1» 100 TB/s
Large-capacity P P e S ———— .
storage >1 memory ottt I;r_o_c_:;e_s_s'_ﬁ o 'r'] ._t """""""" :
/, 1 | | 1
(Use HBM as an example) D RAM - || S [ g . = |
Capacity: tens of GB*_ [_---""~ ! 8 = | : : Vector/Scalar 8 9 ! Computation
Bandwidth: ~TB/s : a'c MatrIX/TenSO processing (7) — : core
L HBM, DDR, 11 & € || r processing unit Te|
\*.‘ LPDDR, e : - Unlt || - :
Bandwidth: The rate at which data canbe | ! "--——— _ _ _ _ . _._.__._---_- :
transferred between two components of a system. | t t Com putation
Connecting with other Al chips |> nterconnection W flow control of
interface Al chips

PPT credit: Prof. Zhenhua Zhu@Tsinghua University
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> Common Hardware Types

- Common hardware types: CPU, GPU, FPGA, ASIC

* | Chip-level metrics/characteristics: peak compute performance (OPS), energy efficiency
(OPS/W), power (W), and area (mm3).

+ Also need to consider: generality and suitableness to algorithms; comprehensiveness of the
software ecosystem.

CPU GPU FPGA ASIC
Central Processing Unit Graphics Processing Unit Field-Programmable Gate Array Application Specific Accelerator
High generality Strong parallel computing Hardware programmability High specialization
Low Al computing capability Flexibility and High performance and low
performance High-bandwidth memory reconfigurability power consumption

General More general and fine-grained ISA. Rely on  More specialized and coarse-grained Specialized
software to implement coarse-grained ISA or even template-based design that
operators, algorithms. hard code an algorithm.
Page 25



>

Chip-level Evaluation Metrics

» Chip-level metrics/characteristics

Chip-level evaluation metrics

Computation per
unit of energy
(OPS/W, OPs/J)

Computation per unit time
(OPS)
L

Performance

Energy Area (mm?2) — Tape-
EfflClency out fabrication and

PPA packaging costs

Powe. Area
[T~~~

Power (W) — Energy
consumption level

PPT credit: Prof. Zhenhua Zhu@Tsinghua University
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> Al1.0 Accelerators in Different Scenarios

From cloud center to tiny edge device

Sepsor, Wearable Device | _ Mobile / 10T Device | Smart City / Auto-driving Car | __ Cloud Center

1000TOPs /W 100TOPs /W 0P /W 170Ps /W
o
o
100k @ ASIC(Digital) Sienulation .
A ASIC(Digital) Test 10GOPs /W E P 1
W ASIC(Digital) Prod uct = .o T
GPU Product
o
=4
1] © 1C0Ps /W
&

W CPU Product

A A A 4 o

Ao

P o
A A
- a
1000TOPs /W A
A
Ay -
100TOPs /W
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»  From Al 1.0 to Al 2.0: Energy Efficiency Metric

Hardware energy efficiency — Inference-system energy efficiency
TOPs/J — Tokens/J

Metric: Tokens/J @
I - -sm
' o 1000 tehens.) )orfﬂ-u 10 tokera )
'I v - -
Py - = o Sr"
I :::cuao - = , P.n.r
I W cwarezaven -~ - P —f .x
R} 5 P ASIC, WaferLLM Bl L ni‘:.’ﬁ
© Oparator Optmizason  _, = . University of Edinburgh, C.:
,' 8 towoeen Conparn ™ o4 He etal, 6.2 Tokens WebPage
— . PIM/INDP, Towards, Tsinghua, | "8 | . .F’ g
o . L. Guoetal, 47 Tokensld % """ ! s N
R 8 ‘ oY o'
o -l | @ ﬁggﬁ.“@
P— FPGA TerEffic, PKU/NUS, Tk ook
GPU AWQ, MIT, J. Lin, et. al., } | C-Li etal. 6.3 Tokens/J | ol ,5&
0.8 Tokens/J j : . "'t
@ fva-.ix %3]#:3
Paper
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>

Basic Knowledge : Development of Chips

PPT credit: Zhenhua Zhu

p R Stanford : S
> G | peeee G W HUAWEI| BRSO AMDD [
2 ‘ eHrata accelerator HUAWEI: AL00 NVIDIA
NVIDIA. | 2014 Institute | SOOmMWLSTOPSW | Ascend 310 s2trtors | D M | NviDIA
CUDA Computing THU : FPGAL6 (=) 16 TOPS (INT8) ( o B200/B100
2006 Technology, FPGA accelerator sl_T;?lesri(rrglna) @erebras FP16 ( Tensor
NVIDIA: | CAS: 187.8 GOPS ™ . “—‘%‘NVIDIA H100 || core) : 2250
- . Wafer-level _ sjnv TFLOPS
Introduced| | Introduced Cambricon : Chios r || FP32: 60 TFLOPS
CUDA DianNao NVIDIA : P100 Qa MLU100 400 5)0 computin FP16 ( Tensor Core) :
452GOPS , 485mW 10.6 TFLOPS nviDiAf 32 TOPS (INT8) units puting 1,000 TFLOPS
| 932 Gops/w ) 16 TFLOPs ( FP16) |
2009 2015 2017 2019 2021 2023
2006 2014 2016 2018 2020 2022 2024
(e ) Google Google Google Google
@A GO le 2017 Google : 2018-19 Google : 2021 Google: 2023 Google: TPU v5
NVIDIA 2015 G gl Unified training Large-scale TPU v4 393 TOPS ( BF16/INT8 )
| oogle: | and inference training TPU v3 275 TOPS (BFI6/INTS)

ICML 2009 "~ [pegan deploying | TPy v2 %0 TFLOPS (SAM @"’bm

NVIDIA : First SAMSUNG :

ol TPU v1 45 TFLOPS , 200W PIM chips w;ze;'hve' chip

accelerated | 9210Ps aNT4), 40w | NVIDIA : 5 NVIDIA: 5 HBM-PIM 850,000 Al-optimized

D T ~2.5TOPS/W V100 with pyioia || Edge-side nyvioia Zr?"f’rs"::;?gn‘:ff'c'e“cy cores

learning paper Tensor Core Jetson Nano 2x performance AMD 1

\ s 125 TFLOPS 472 GFLOPS , 5-10W J | improvement ) AMD MI300
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Hardware System & GPU Device

NVIDIA GPU
« GPU device:

« GPUs use a Single Instruction Multiple Threads (SIMT) architecture.

« Compared with CPUs, GPUs are better suited for programs featuring simple
control logic and large-scale parallel computation.

« Hardware system: A GPU is not an independent computing platform, but rather a
co-processor to the CPU.

ALU ALU
Control
ALU ALU
Cache
DRAM
CPU

[1] C. John, et al. "Professional CUDA C Programming."

PCle Bus
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> GPU Microarchitecture

 Design Concept of GPUs

« Single Instruction Multiple Threads (SIMT): A single instruction is executed in
parallel by multiple threads.

SM multithreaded

Host CPU Bridge Systom memor
[ H H System memory | instruction scheduler

Time
___________ 1 I1|11|1|11111|11|I
H Warp 8, instruction 11
SM (Streamlng : TYY YV YYYYYYYYYYY
- gespagsgg L1 0§ | | ) SRRp—
Multiprocessor), [ Warp 1, insiruction 42
YTYYYYYYYYIIYYYYY
Servesasthe I e Ly
. 1 Warp 3, instruction 85
basic hardware 1222223230025000
1 | 1111|-|.v.1.111|11|
_unltfor.parallel , |
instructions. l ARG
__________ | I Warp 3, instruction 96
YV Y Y YYYYYVIYYYYY
gepegcp g 0 0 ) ) 0§ Rogiepany
[ warp 1, instruction 43
¥ vvvvvvvvvvvvvveew

SIMT

GPU Architecture

[1] E. Lindholm, et al. "NVIDIA Tesla: A Unified Graphics and Computing Architecture.”, in IEEE Mirco, 2008.

Page 32



> GPU Software Stack

* NVIDIA GPU Software Stack

« CUDA (Compute Unified Device Architecture) is the NVIDIA’s GPU parallel
programming platform and programming model, featuring a rich software ecosystem.

« Al & LLM frameworks is built on them.

: Analysis

' LLM Training
e neignt cuda-gdb Framework
\l/—/ Megatron-LM
CUDA Toolkit Base Al Framework

Toolchain &,Runtlme Lib ) PyTorch, LLM Inference

Tensorflow, Framework

Jax TensorRT-LLM

Communication Operator
Library Library
NCCL, CuBLAS,

NVSHMEM cuSPARSE

[1] M. Shoeybi, et al. ” Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.”, arXiv, 2019.
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> GPU Programming Model

e NVIDIA GPU Software Stack

« CUDA allows writing GPU code in high-level languages such as C/C++, reducing
programming complexity.
Al algorithms

Python (PyTorch)
: User
l (pybind ) interface
CUDA C

Processed by
compilers

SASS Assemble

GPU
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GPU Programming Model

* Programming Organization: How to Parallelize?

Host Device
Grid

Kernel ——» Block
' (0, 0)

Blo’ck""‘
0.

‘Block (1, 1)

Block
(1.0)

Block
(1.1

Block
2,0

. Block
2,1

Thread

[1] C. John, et al. "Professional CUDA C Programming."

SIMT: Single Instruction Multiple Threads

unit A
v

Block

Thread
Minimal parallel Kerne|<<@,@>>

A

A block contains multiple
threads.

Grid

A grid contains multiple blocks,
encompassing all threads of a
single kernel.

Number of
threads per block

Number of
blocks per grid

Why define the above hierarchical organization?
It corresponds to the GPU memory hierarchy!
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> GPU Programming Model

« GPU Memory Hierarchy
« Thread
e Each thread has its own
registers (RG).
 Register contents are not
shared between threads.
 Block

e All threads within a block
share Shared Memory. Can
cooperate & communicate
through it.

 Grid
 All blocks access data from

Global Memory (High
Bandwidth Memory, HBM).

[1] C. John, et al. "Professional CUDA C Programming."

SIMT: Single Instruction Multiple Threads

Host

(Device) Grid

Block (0, 0)

s

A
v

Memory Hierarchy
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>

GPU Programming Model

GPU Memory Hierarchy

Bandwidth and capacity of each memory
hierarchy (A100 40GB GPU)

From the perspective of memory access efficiency: how threads are organized
significantly impacts kernel performance.

( 256KB/SM )

Shared ~19TB/s
Memory ( 192KB/SM )

Global ~1.6TB/s

Memory Hierarchy

[1] C. John, et al. "Professional CUDA C Programming."
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>

Algorithm Deployment Process

* How Al algorithms are deployed on hardware for actual computation

* Al Inference can be seen as forwarding data on a computational graph, where each
node represents a single operator, edge represents dependency.

> Add & LayerNorm

| F%Z |
3

| Activation |
7

| FC1 I

7y

> Add & LayerNorm

|  Multi-head Self-Attention |

fe; )
K Cache V Cache

| ]
L Wo J wi ]| w |

A ' A

Transformer layer in LLMs

FC1

Taking FC1 as an
example

Y =wTX
| N |
K w
K :
M| X Y

Abstracted as a single GEMM

operator
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> Algorithm Deployment Process

* How Al algorithms are deployed on hardware for actual computation

* During deployment, operators are translated into hardware instructions. In the runtime,
hardware executes instructions. — — :

. enerated CUDA C++

N 1 obal__ void

1 1 2 graphene_kernel(ceast half «__restrict__ A,

3 const half «__restrict__ &,

4 half »__restrict__ C) {
5| int bid_m » (blockIdx.x % 8);

Dispateh Unit (32 thread/clk)

Register File (16,384 x 32-bit)

K w R B . .
f
X Key question: Given the hardware, how can we evaluate and
u « improve the inference efficiency of an LLM?
N
RS T NN 3y RN SN L Ly R R R wiawmias Eees pres rroe
- R ‘:,i q“%:::é E éj)‘a; E:é;;;;;lé:;:;:’f)) ’ INT3Z INT32 "Aﬂw FPes
h::m ® Threads @ Kernel = Instruction ® Control Flow | wow W W W W W W |
Abstracted as a GEMM Hardware Instructions (CUDA) The hardware executes
operator Include computation, memory, and instructions to perform
control. computations.

[1] Bastian Hagedorn, et al. “Graphene: An IR for Optimized Tensor Computations on GPUs.” ASPLOS 2023.
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Review: Application Challenge

The scale of the model size and input/output pose challenges for efficient
inference across platforms and application scenarios.

Model size, input/output length f Z> Inference cost (time, storage, energy)f

’z Human < ' : 1Al I— &Wcrld
i e

Cloud ——7————————— —
Requirements or constraints of application scenarios and platforms

High Low Small Low Energy
Throughput Latency Storage Consumption

Deployment
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To meet requirements or constraint of application scenarios and

platforms, we need to optimize the resource consumption of Al inference.
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> Problem Definition: Objectives & Constraints

Optimization objective or constraint: Usually, latency, memory, energy
consumption or throughput will be the ultimate objective or constraint on
“efficiency”. In the meantime, the intelligence level of Al needs to be retained.

Measured metrics Memory
Measured by testing model on platform, platform-related 4
Directly correspond to objectives / constraints, f

related to final user experience, resource consumption, efc.
1. KV Cach
2.Interm:gia?e

Activation

3. Other

Time [Throughput] [ Latency ] Overheads
Peak
memory

footprint | |
|| TimeToFirst | |
e w el Toemers
Memo Memory Model ‘ Lo
H P ! I I | Ti
ry fOOtprInt arams Lo - Time Pe(rTCF)’lgg;JtToken
\, ) ! [ ‘
r ~ — — — R » Time
E j : End-to-end/Request/Generation Latency :
1 1
Energy nergy Prefill Stage '«—— Decode Stage ——»
\, .

*Note this is only a conceptual illustration. In actual serving framework, the KV cache pool is usually pre-allocated.
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> Problem Definition: Objectives & Constraints

Optimization objective or constraint: Usually, latency, memory, energy
consumption or throughput will be the ultimate objective or constraint on
“efficiency”. In the meantime, the intelligence level of Al needs to be retained.

Measured metrics
Measured by testing model on platform, platform-related
Directly correspond to objectives / constraints,
related to final user experience, resource consumption, efc.

Time {Throughput] [ Latency ]

( N

Memory

Memory footprint
\, V.
é N

Energy Energy
\, .

Proxy metrics

Estimated with only model specification, platform-agnostic

Widely used as the objective in some academic work or early

stage of model-level optimization.

In practice, they are also useful in diagnosis of the bottleneck

and quick estimation of the measured metrics.

-
Compute Amount
+ FLoating Point OPerations (FLOPs)

- Multiply—ACcumulate operations (MACs)

\

Param Size

Memory footprint Access Amount

(Estimated) ] [ (Estimated) Memory

~

Page 45



» How Proxy Metrics Relate with Measured Metrics

* We can use three important proxy metrics to analyze the efficiency
* Compute amount: the amount of operations
* Memory access amount: the amount of data that read or written between off-chip
DRAM and GPU chip
* Memory footprint: the occupied off-chip DRAM size to store parameters/KV
cache/activation

D Higher Latency

= Higher Compute Amount

x|+

Lower Throughput Then, let’s bring hardware

IEd Higher Memory specification into the picture.
=] Access Amount \ gn Higher Energy P P

Consumption

@ Higher Memory Footprint\g Higher (Actual)
Memory Footprint
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» How Proxy Metrics Relate with Measured Metrics

Compute Amount Memory Access Amount

Intuitively, Peak Compute Perf” Bandwidth

are two lower bounds of latency.

« But the compute units might not be fully utilized, the bandwidth might not be fully utilized:

Achieved Bandwidth
Peak Bandwidth

1 . Achieved Compute Perf.
Compute_utilization = P

Bandwidth_utilization =

Peak Compute Perf.
« Review our previous estimation example:

Llama-3.1-8B Compute Memory VRAM TTFT* ( \
#Prefill tokens Amount Access | Consume Why do we use compute amount

instead of memory access amount to

=> |t's because prefiling stage is
The compute amount of prefilling 1K token with Liama-3.1-88 is 15.9 TFLOPs. | usually more “computation-bounded”

NVIDIA A100 80G’s FP16 peak compute performance is 312 TFLOPS.

Compute Amount _ 15.9 TFLOPs _ 51 ms
Peak Compute Perf. x compute_utilization " 312 TFLOPS x compute_utilization - compute_utilization

Latency =

If we assume 30%~70% compute utilization, we can get 73ms~170ms.
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»  Performance Analysis Model: Roofline Model

« Proposed by David Patterson in 2009

« Purpose: Uses an algorithm’s compute and memory access characteristics (operational
intensity) along with the chip’s peak performance and memory bandwidth to roughly assess
computational bottlenecks and guide subsequent optimization directions.

souew.lopad

alndwon

A

Peak performance
The maximum
performance when
compute units are fully
utilized.

>

Operational Intensity
Number of operations per byte of
memory accessed

#compute amount
#memory access amount
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»  Performance Analysis Model: Roofline Model

« Proposed by David Patterson in 2009

« Purpose: Uses an algorithm’s compute and memory access characteristics (operational
intensity) along with the chip’s peak performance and memory bandwidth to roughly assess
computational bottlenecks and guide subsequent optimization directions.

A [ 4
/
/
/

/

, 7 When bandwidth is fully utilized,
, performance depends on memory bandwidth.

/ Slope: memory bandwidth (Bytes/s)
/
K >

Operational Intensity
Number of operations per byte of
memory accessed

aouew.oLad
alndwon
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»  Performance Analysis Model: Roofline Model

» Proposed by David Patterson in 2009

« Purpose: Uses an algorithm’s compute and memory access characteristics (operational
intensity) along with the chip’s peak performance and memory bandwidth to roughly assess
computational bottlenecks and guide subsequent optimization directions.

¢ Compute—memory balance point

Memory%u nd

Peak performance

aouew.oLad
alndwon

Slope: memory bandwidth (Bytes/s)
>

Operational Intensity
Number of operations per byte of

memory accessed
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»  Performance Analysis Model: Roofline Model

« Take LLM as an example:
« Prefill stage: Compute bound; Decode stage: memory bound

] ‘:i i Roofline Model of NVIDIA A100
| 1 : __ 10000 ¢ ,. .
! 1d :: d ! £ _ © Q/K/V/O_Prefill QKT_Prefill ® FFN_Prefill
Q/K/V/O i —— 1 S i S 000 | @Q/K/V/0_Decode QKT_Decode @FFN_Decode
i l+d ii d+1 i E : BRI R}
T i EE l i 8 100 : a (' \\\
QK : ! ! T+1 .- Y
P> 1 | ~1 1 £ » ‘
: i I b2 10 Compute
! | 1 [ E
AttenV i l EE I+1 i t \ . bound )
: t P8 ®Memory "~ !
FEN | 2w S i 3 : ‘““’bound = Te--__-- -7
U Ttdeey 3 dpyt1 ) @ on L e
fommmmommmoees ittt ’ 0.1 1 10 100 1000 10000 100000
Operational intensity at different stages Operation Intensity (FLOPs/Byts)
(FLOPs/Byte)
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What is the Optimization Space

For designing the optimization space, we need to know the “bottleneck”
modules or properties of the current algorithm, model, and software that
hinders the efficiency of running them on the given hardware.

Root causes of LLM inference inefficiency

* Application: The input / output token length can be very long.
* Algorithm: Autoregressive model samples tokens one by one.

* Model: (i) The transformer model has a large number of weights
and computations. (ii) Attention modules have quadratic
complexity w.r.t. the input token length.
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>

What is the Optimization Space

7
Application 7

Long Input/O)ltﬁ

ut

)
l,
4

~

~

Algorithm

-

Autoregressive, ©

Sampling Meghod
/

/-
4

/;

Model

Large Model Scale
Attention Operation

A

_Causewhat?——————— —Optimization Ideas
- e — = — — —
e ——————————— I—- — — | |dea 1: Parallellze the sequential
“samphng-af existing model? I
| Algori- X
______ || thm Idea 2: Compress the input I
,Low eperattonal intensify cause low —modifv the | -Gentetho.shorter one? I
compute utilization algorithm | |dea 3: Don’t use autoregressive
>+ High end-to-end latency . _ __ _ _ —_— model? I
. Qynam'rca‘n'y increasing KV cache — = ~__‘_____|
-~ might cause memory fragmentation | Idea 1: Remove redundant
with a naive system implementation, I params/acts/computation? I
increasing both memory footprint and | _Model Static (model compression) or I
_aceess‘cost —I modify the_ —dynamig;(_d_@fmic inference)
\ I model Idea 2: Design novel I
>\/ —— T T~ lightweight structure (e.g., |
N F~ efficient FEN & attention)
* Large computation \ \\\ 'A'b_________'l
« Large memory access N - L _I_ Focus 1: compiler/runtime
. ﬁb'fém" lib/hardware for efficient NN
* Large memory footprint ~
\ modKy the

\I oftW

Focus 2: request scheduling /

execution I
resource management for I

service-level objectives J




What is the Optimization Space

Optimization Ideas

Techniques

r— " 1

Idea 1: Parallelize the sequential

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

Input Compression
prompt compression, RAG

Alternative Generative
Paradigms

Model Compression
reduce model redundancy in a
static manner

Dynamic Inference
reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Operator-Level Opt.

Framework-Level Opt.

I Algori- sampling of existing model? -I_ - - -

I thm Idea 2: Compress the input I_ —
modify the context to shorter one? I -

I L ldea 3: Don’t use autoregressive _I_ —_— e —p

model?

i— =1

Idea 1: Remove redundant
I params/acts/computation? I —_——
Static (model compression) or T ~

| Model dynamic (dynamic inference) ~ -
modify the I

| model Idea 2: Design novel

lightweight structure (e.g., —
I efficient FFN & attention) :II. —
| Focus 1: compiler/runtime

lib/h for effici —_——

I System ib/ ardwz;icourt?or:ment NN <I;\ —_—
modify the | ~N
software & Focus 2: request scheduling / - —"
hardware resource management for —I’ -

I service-level objectives |

Hardware-Level Opt.

Optimization Space

There is no representation/space or
optimization formalization general

to many work. The design of these
methods directly change a core application
or algorithm property to improve efficiency.

* Model Structure (e.g., #layer, #channel)
» Value Representation (e.g., low-bit

representation)

« Computational Graph (e.g., fusion)
* Kernel Implementation
* Request scheduling, resource

management, model placement

* Framework Implementation
* Hardware Implementation
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P Practical Pipeline of Model/System-Level Method Design

Ve

Estimation According to Specifications include Application & Model & Hardware

Application Specification Model Specification Hardware Specification Can estimate theoretically:

+ Objectives, e.g., memory Num hidden layers * Peak Compute Performance ¢ Judge compute or memory
footprint, latency, throughput Num key-value heads * Memory Capacity bound of each module by

» Context lengths Hidden size *  Memory Bandwidth roofline model

Intermediate size
Num attention heads
Head dim

« Batch size

® Estimate bottleneck module
* Estimate overall objectives

Profile/Diagnosis Tool: Nsight System & Nsight Compute

.
b CPU(256)
v  CUDA HW (0000:01:00.0 - NVIDIA GeForce RT

- 2240 K 8  =DEDI 08
w  J20% Kemel
63.9% void cutlass KeeralT1. Param:

17.3% void cuthass “KerneKT1: Param:

[
L

%
o

Operational Intensity

Performance

A 4

Model-Level Design
Analyze compressing which dimension / how to redesigning the module
might help with the efficiency most
Analyze algorithmic redundancy & property, how can we retain/restore
performance

System-Level Design (Operator-Level)

Operation fusion to reduce memory access and kernel launch
overhead
Reimplement some operations
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> GPU Software Stack

* NVIDIA GPU Diagnosis Tool

* Nsight System
« A system-level analysis tool used for diagnosing performance bottlenecks from a
global perspective and identifying key operators that require optimization.
nsys nvprof -o {output-file} python3 xxx.py
« Taking LLaMA2-7B as an example, Nsight Systems can visualize all operators

and their calls across all inference stages. It enables researchers to quickly
pinpoint efficiency bottlenecks from a global perspective.

* Input length: 2048 tokens; decoding: 2 tokens

v wwwmomomoo-wmw«ai " ' N——— : : - PR— pr— r— ' A —
ST
> 3200 Kemel ehobh L L L LR L L L L L L .
rassemeepeneneenset | I B B R DD R DR OIDROIROBR IR OIRROROIRNRIRNINDIOI
» ivempmespiestcssgemmmpiel f L o dedid b il sl o da L b 1,
P 104N clementwise kemel AV VI VTV I V! PR Y T I R PR S
P 62% cunn_SoRMaxForwend U T T T T T TR T T T TR BT T I | | |
b 77.6% Memory |
Prefill 1-step Decode
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> GPU Software Stack

* NVIDIA GPU Diagnosis Tool

* Nsight System
« A system-level analysis tool used for diagnosing performance bottlenecks from a
global perspective and identifying key operators that require optimization.
nsys nvprof -o {output-file} python3 xxx.py
« Taking LLaMA2-7B as an example, Nsight Systems can visualize all operators

and their calls across all inference stages. It enables researchers to quickly
pinpoint efficiency bottlenecks from a global perspective.

* Nsight Systems analysis reveals that, during the decode stage, the General Matrix-Vector
Multiplication (GEMV) operator in the linear layer is the primary performance bottleneck.

» CPU(256)

~  CUDA HW (0000:01:00.0 - NVIDIA GeFarce RT I . ] " - = : .
- Wi o. . [mfumls ovoer. 1 o . [mmfumls o ooer.. 1 o . [Emfusli soom .1 ¢ . EmEme
v  320% Kemel I I I

63.9% void cutlass: KemneXT1: Pararmt
17.3% void cutlass: KermneXT1: Param:
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>

GPU Software Stack

* NVIDIA GPU Diagnosis Tool

Nsight Compute

Performance ( TFLOPS )

R

NVIDIA Nsight Compute

A kernel-level performance analysis tool focused on deep optimization of
individual CUDA kernels, used in conjunction with the Roofline Model for
performance analysis.

ncu —set full -o {output-file} python3 xxx.py

Taking LLaMA2-7B as an example, using Nsight Compute to analyze the GEMV

operator in the linear layer shows that the operator is severely memory-bound.

» Solution approach: Apply INT4 quantization to the weights to reduce weight's memory

access cost.

v

Operational Intensity (FLOP/Byte)

4096 11008 159.3 52.0

11008 4096 45.6 37.6

4096 4096 43.5 23.0
RTX 3090 GPU
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> GPU Software Stack

* NVIDIA GPU Diagnosis Tool

- Nsight Compute

« Taking LLaMA2-7B as an example

* Implementation: To achieve acceleration, the dequantization operator and the GEMV
computation operator need to be fused.

#pragma unroll
for (int ic_@ = @; ic_0 < 4; ic_0++){
// iterate over different uint32_t packed_weights in this loop
uint32_t current_packed_weight = packed_weights(ic_0);
half packed_inputs [PACK_FACTOR];
// each thread load 8 inputs, starting index is packed_group_idx * 128 = 8 (because each iter loads 128+8)
if (inputs_ptr_delta + ic_® < IC / PACK_FACTOR) {
=((floatd«)packed_inputs) = =(inputs_ptr + ic_0);
#pragma unroll
for (int ic_1 = @; ic_1 < PACK_FACTOR; ic_1++){

// iterate over 8 numbers packed within each uint32_t number

float current_single_weight_fp = (float)(current_packed_weight & @xF); Dequantization Operator
float dequantized_weight = scaling_factor * (current_single_weight_fp - current_zeros); .
JLiflhackTdy ¥ AL RlockTdy o 8 L threadTdy v B L& threadldy y pEE ic D AL ic 1 A L oo Fusion
psum += dequantized_weight * __half2float(packed_inputs([ic_1]); GEMV
current_packed_weight = current_packed_weight >> 4,
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> Example: Design Thought of Model Compression Method

* How to design a sparsification method for a given model and scenario
* Example: MoAlll

Hardware Data distribution Algorithm Capability
For long efficiency visualization performance requirements for
context, the evaluation evaluation sparse models
attention
tor A 4 A 4 \ 4
opera Sparse patterns differ Needs to be
incurs the . . . ;
highest Dynamic/Static across different extensible/scalable
com;;%taet?onal heads for long context
I
cost.
v v
A 4 . . \ 4 \ 4 \ 4
IR S Design extension
Sparse low high Homogeneous Heterogeneous rules o%‘the attention
Attention hardware hardware sparse pattern attention pattern span
efficiency efficiency P

[1] Fu, Tianyu*, Huang, Haofeng*, Ning, Xuefei*, et al. “MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression.” CoLM 2025.
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What is the Optimization Space

Optimization Ideas

r— " 1

Idea 1: Parallelize the sequential
sampling of existing model?

-I—_

Algori-
I thm Idea 2: Compress the input
modify the context to shorter one?
I algorithm Idea 3: Don’t use autoregressive
model?
[ S
I Idea 1: Remove redundant
I params/acts/computation?
Static (model compression) or
| Model dynamic (dynamic inference)
modify the
| model Idea 2: Design novel
lightweight structure (e.g.,
I efficient FFN & attention)
| Focus 1: compiler/runtime
lib/hardware for efficient NN
I System execution
modify the
software Focus 2: request scheduling /

resource management for
service-level objectives

Techniques

—q

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

—q

Input Compression
prompt compression, RAG

— —

Alternative Generative
Paradigms

g

Model Compression
reduce model redundancy in a
static manner

Dynamic Inference
reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.

Optimization Space

There is no representation/space or
optimization formalization general

to many work. The design of these
methods directly change a core application
or algorithm property to improve efficiency.

* Model Structure (e.g., #layer, #channel)
» Value Representation (e.g., low-bit

representation)

« Computational Graph (e.g., fusion)
* Kernel Implementation
* Request scheduling, resource

management, model placement

* Framework Implementation
* Hardware Implementation
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Menu of Techniques

Model Compression
reduce model redundancy in a
static manner

Dynamic Inference
reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Model Compression
Quantization
Sparse Attention
Weight Pruning
Sharing
Knowledge Distillation

Dynamic Inference
Module-granularity
Model-granularity

Structure Design
Mixture-of-Experts (Efficient FFN)
Efficient Attention
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Menu of Techniques

Model Compression
Quantization

Model Compression
reduce model redundancy in a
static manner

|
|
Model- Dynamic Inference | Dynamic Inference
|
|
|

reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Structure Design
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> Definition

 Motivation

Neural network weights and activations are typically represented using high-precision floating-point
formats. However, there exists numerical redundancy in neural network computations, and using
lower-precision arithmetic does not significantly affect the accuracy of the network .

e Definition

Quantization: Represent weights & activations with low-bit numbers, thereby storing them or
computing them with reduced numerical precision.

[ NERRRRRRRRRARNRRRRRNANN — [OIIII11
Sign 8 bit Exponent 23 bit Fraction (significant / mantissa) Sign 1 bit Mantissa 7 bit
(-1)#07 x (1 + Fraction) x 2€xwonent-127 e Exponent Bias « 127 « 21 [-127, 128]

IEEE 754 standard 32-bit floating-point data 8-bit fixed-point data

* B /3R MIT EfficientML Course
[1] Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, Han et al., ICLR 2016.
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> Two Procedures

* Offline stage: Model quantization procedure

* Convert the FP weights into low-bit-width weights

* Determine the quantization parameters for activations (optional, if using low-precision activation and not using
online quant) Quantize floating-point weights (FP32/FP16) into low-bit weights (INT8/INT4).

Quantization
Tools
oo ~ o—
FP32
Weights

* Online stage: Quantized inference procedure
® Low-Precision computation: LP arithmetic -> Requantization

l Weight l l Bias l

A\ 4 A
Input

int32 int32 Output
( ) Linear Accumulator n |n Quant ( p)

¢ High-Precision computation: Dequant -> HP arithmetic -> (optional) Quant

[1] https://nics-effalg.com/assets/ppt/2023-08-30-QLLMIntro.pdf
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> Model Quantization Procedure

* Example: Uniform Fixed-Point Quantization

* A quantization method needs to answer: “How to
convert floating-point numbers into fixed-point
number representation? ”

q=([r/Sl=2) 0 "

Fixed-point Floating-point Roundina function r—:ﬂ%ﬂm—| —p

* Quantization parameters: scaling factor (S); zero

point (2) x g

* How to decide quantization parameters? Take Floatiszgl-point
asymmetric quantization (Z # 0) as an example, if q
we want the float-point range to cover ["min, Tmaxl: Gmin & max
Zero point
S — Pmax = Tmin 7 — Fmax + Pmin

21\/'—1 - 2 * ZN'—]

* B F3iE: MIT EfficientML Course
[1] Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, Han et al., ICLR 2016.
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>

Quantization

* Quantization Granularity

* For actual storage decrease and speed-up, a group of values needs to share the same quantization
parameters (the group size is called quantization granularity, e.g., tensor-wisely, channel-wisely).

FP16

* B F3iE: MIT EfficientML Course

Tensor-wise quantization

Channel-wise quantization

Group-wise quantization

— NT
S||Z INT
. [s][z INT
S||Z INT
S||Z INT
S||Z INT INT |[S]||Z
— [S]||Z INT INT |[S]||Z
S||Z INT INT |[S]||Z
S||Z INT INT |[S||Z

[1] Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, Han et al., ICLR 2016.

Page 69



> Quantization

* Core focus of quantization parameter decision: Appropriately balance representational
range and precision (i.e., balancing truncation error and rounding error).

10°
|
107 § . l o I
g 107 == 1072
: ' .
| 107 4 107} y
. |' v \.‘""‘ﬁ g ‘
104 10 4 ‘ |"|‘I l 10+ ' ‘ Y 'l
[ 4 ‘ ‘
N T 1 ,,Iu]_ i lLJ,le,, ,)11111, will ki
-03 -0.2 -0.1 Qo 01 02 03 -0.3 -0.2 ~-0.1 00 01 a2 03 -0.3 -0.2 -0.1 0.0 01 0.2 03
Weight Value Weight Value Weight Value
Large rounding error Large truncation error Well-balanced
(large scale factor) (small scale factor) (appropriate scale factor)

[1] Zhao, Ritchie, et al. "Improving neural network quantization without retraining using outlier channel splitting." International conference on machine learning. PMLR, 2019.
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>

Quantization

* Two types of quantization process
* PTQv.s. QAT

(~ Repara- | »f
= I_ _meterize "7 I_ Selection !

“““ f 1 (
%- |r QAT : i PTQ
soeToee | Tououes T

QAT Workflow

Quantizer

T

N7 b
Training I
_techniques_

PTQ Workflow

Pretrain »f - ﬁe_pa?a-_ - '».’ " Quantizer ‘I
' I_ _meterize_ "7 « _ Selection_
______ o« _W_l'h_ A
&= (" “Act. quant. l«f Adjust |«| eight
I_parameters ' * |_quant.valye ! | ! quant
""" - =E===== | parameters |
—————— -’

Pros Cons

No weight optimization,
No training cost,

Fast quantization
process

Lack of recovery,
Difficult to quantize
models to ultra-low
bitwidth

Pros
Quantization with
performance recovery,
Enabling lower bitwidth

Cons
High computational
cost and data
demand
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> Quantization

* Representative studies

Quantized Tensor Type Quantized Quantized Quantized Value
Weight Activation KV Cache Format Criterion Update

GPTQ S Uniform Statistic-based S

AWQ \/ Uniform Search-based \
Squeezel LM \ Non-uniform | Statistic-based
GPT3.int8() \ \ Uniform Statistic-based

SmoothQuant \/ \ Uniform Statistic-based \
RPTQ V V Uniform | Statistic-based
OminiQuant \/ \ Uniform Search-based
FlexGen \/ v Uniform Statistic-based
Atom \/ \ v Uniform Statistic-based
KVQuant N Non-uniform | Statistic-based
KIVI \ Uniform Statistic-based

[1
[2

Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device llm compression and acceleration." Proceedings of machine learning and systems 6 (2024): 87-100.

[3] Kim, Sehoon, et al. "Squeezellm: Dense-and-sparse quantization." arXiv preprint arXiv:2306.07629 (2023).

[4] Dettmers, Tim, et al. "Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale." Advances in neural information processing systems 35 (2022): 30318-30332.

[5] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." International conference on machine learning. PMLR, 2023.
[6] Yuan, Zhihang, et al. "Rptq: Reorder-based post-training quantization for large language models." arXiv preprint arXiv:2304.01089 (2023).
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> SmoothQuant

* Typical PTQ Method: SmoothQuant!'!

* In large models, activations often contain

extremely large outliers, leading to m Analysis of weight and
significant quantization errors during W8A8 activation data distribution

quantization.

 This study focuses on analyzing the data
distribution patterns of the model and
exploring methods to reduce outliers,

« Qutliers in large-model activations appear in
specific channels. This property can be

g : leveraged to balance the data distribution of
aiming to achieve nearly lossless W8A8 iqht d activati
quantization. welignis and activations.
Freque
nky outlier IX| W]
1 1 OPT-13B 2 10 - 0.1
. . Outliers * Max Va!ue: 3250 3 low effective bits
. Proportionof 60: 0.2% = HAY
1 | S g 1
T T

'S
~ n 0 .
@7 hard to quantize very easy to quantize
al

ue

[1] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.
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SmoothQuant

* Introducing channel equalization to suppress outliers in activations.
Activation channels with large outliers are divided by an equalization factor

sj toreduce their magnitude.
The corresponding weight channels are multiplied by the same factor s; to

appropriately increase the weight values.
Y = (Xdiag(s)™}) - (diag(s)W) = XW ;= max(|X;|)*/ max(|W;[)!

Migrate the quantization
difficulty

70

3 ¢
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| s .

.g 4 I Qoo ! 20000
- 0 I,‘ww\ 0 15600

10000 & o o000 &

>

0
S 1000 > X
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0 S000 > 3000 )
" ¢ Ly ¢ o
(&, _?I.n/"“, 4%&_/ 000 000 0 (“wv.,‘/ 00 wo 0 \ 14.“%'./ 000 000 O \
ey Somr 0

Activation (Original) Activation (SmoothQuant) Weight (Original) Weight (SmoothQuant)

Very easy 1o quantize Harder but still easy to quantize

Hard to quantize Easy to quantize

[1] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.
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>

AWQ

- Typical PTQ Method: AWQ!"!

* Not all weights in an LLM are equally
important.

* Protecting only 1% salient weights
can greatly reduce quantization

Motiv

ation

error.

bad hardware efficiency

Wepis Q(W)i Q(W)rtixpree #
120-02)-24{-148 *l|e0] <2] 2 vl a0 ~2] -}
slaslerslers s| 4|+ 1 dclcm]incll"c \illlcn'l ........ PO T ST ST N
oSl 1al-28-19] “1|e2] weights by .7 B E
13}+03f-ar Q 4 1| +0 ﬂC[i\'ﬂliOl’_,"" ~4| 22| 41|40
s15)-18l-32-24 - o2| <2 -3] -3 ‘.".‘ o2| -2]| -3] -3
4 28f-3 al=3]=s ] [2[=|=]=
sotf-asfe24l424 40| 4| 42|42 X ] ® Jsof-4|2]0
409l A M -1 928 1|4} =212 1| &3] 2 2

(a) RTN quantization (PPL 43.2)  (b) Keep 1% salient weights in FP16 (PPL 13.0)

m To consider bothsalient and non
salient weights, AWQ searches for
an optimal scaling factor that

minimizes the reconstruction error

for a certain layer.

s” = arg min L(s)
s

L(s) = ||Q(W - diag(s))(diag(s) ' - X) — WX||
Q(W)inrs

scale bcform}rlt_iic’ M

a

H EENEEN

t average mag.

x *

[1] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device lIm compression and acceleration." Proceedings of machine learning and systems 6 (2024): 87-100.
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>

rFlatQuant: rFlatness Matters for LLM

—_  Quanfization

P* = argmin | Y — QXP)Q(P W%,

* Motivation: Affine transformations are more powerful to suppress outliers
* Methodology: Learning affine transformations for each linear layer
* Reducing transformation overhead: Kronecker product & kernel fusion

P :P1®P2,

: (c) W - diag(c) € RM*m2xm

| ( s | | | | | | | | I
| diag
| _

; \ /
| re-distribute T

| - P’

e g e — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —  — — —

—
—
— — —

f(/diag(c) € RMxnaxk

I 0

[1] Sun, Y., Liu, R., Bai, H., et al. "FlatQuant: Flatness Matters for LLM Quantization". ICML 2025.

~

X

T re-distribute

diag(c)

J
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>

rFlatQuant: rFlatness Matters for LLM

How to Integrate FlatQuant with the Transformer architecture?

(b) KV Ca(.he

Integration with

—1
P liw, | P 5 =
= a "WYalimi
= e | oW
N P_HEWJQg@@j £ e e
2 a y VRl =- H ! p-!
= | i | d
= P iw, P, —
' Self-attention

Self-attention

— — —
— —
—
— —
—
—

Integration with feed-
forward network

LayerNorm
%
4—'—¢
g
L&

=
Q

Feed-forward network
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> rFlatQuant: rFlatness Matters for LLM

—_  Quanfization

The mean square error of quantization along channels & tokens can be effectively reduced

Per-channel Scaling 1 Hadamard [ FlatQuant

(a) Per-channel Scaling. (b) Hadamard Transfrom. (c) FLATQUANT. (d) Stacked View.

FlatQuant @ Github



> IntactKV: Keeping Pivot Tokens Intact

Observation: the pivot tokens exhibit attention sinks together with massive activation outliers.

clipped activation

(a) Output activations of
LLaMA-30B Layer 24

clipped activation

| =+ 2000
1500
1000

Panng, 3000

4000 O

(b) Output activations of
LLaMA-2-7B Layer 24

VPR P T O g e

(c) Attention map of
LLaMA-30B Layer 24

Y

8

b1
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S

8

3

3

e ”1 1'{!‘1 A{J} f \V(n_q é b d -“'{‘v’w’"’“f‘ié"f.(ﬂ u‘?q«gl :

(d) Attention map of
LLaMA-2-7B Layer 24

[1] Ruikang Liu, Haoli Bait, et.al. IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact. Findings of ACL, 2024.

b9
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3

10

w
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> IntactKV: Keeping Pivot Tokens Intact

Avoid the quantization error accumulated on pivot tokens that are critical to the performance.

System Prompt: [BOS] A chat between ... intelligence assistant ... . USER:
* The system prompt <«——

contains most pivot [ Full-precision LLM }
tokens with massive . '
" ﬂ saved offline The rest KV cache
outhers / / are generated by
[BOS] A USER: Please generate words ... qu,antlzed model
« System KV cache // &) [}
are generated by the IntactkVs &, The Rest KV Cache T
BF16 model T Decoding i :
- Theycan be further | N -
trained like LLM [ Quantized LLM }-}------
parameters \ USER INPUT: Please generate a story in 500 words /

[1] Ruikang Liu, Haoli Bait, et.al. IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact. Findings of ACL, 2024.
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> Evaluating Quantized Models

Section Tasks & Ability Benchmark Size | Model Family

[1] Li, S., et al. "Evaluating Quantized

CHID (Zheng et al, 2019) | 2002

Winogrande (Sakaguchi et al,, 2021) | 1267

Large Language MOdels_“ ICM L 2024_ Understanding RACE (Lai et al., 2017) 1489 | OPT (125M-66B). LLaMA2 (7B-70B),
. . . Sec. 3 LAMBADA (Papemo et al, 2016) 5153 | Falcoa (7B-180B), Bloomz (S60M-176B),
* Evaluation Dimensions — SIQA Sapetal 019 | 199 | Mk, 8270
. . . . PIQA (Bisk et al., 2020) 1876 |
e Effects of quantization on 5 major categories of o | MMLU (Hendeyeks et b, 20210) | 14079 |
tasks . CEval (Huang et al., 2023) | 13948 |
. . ore Multi-Step Reasoning -
e Effects of quantization on 11 model families SumcgyQA (Gcvactal, 2021) | 2290 |
L Instruction-Following | HEISWag Zellers el 2019) | 10003 | - LLaMA2 (78-708), Falcon (7B-1508)
* Effects of quantizing 3 tensor types on model ARC(Chrktal.2018) | 7787 |  ChatGLM (68), Mistral (7B, $x7B)
Self-Calibeation MMLU (Hendrycks et al, 2021b) 14079 | Gemma (2B, 7B), Mamba (2.8B)

performance

]
]
]
]
]
]
]
]
]
Sec. 4 | GSMSK (Cobbe etal., 2021) 1319 |
]
l
]
]
]
]
]
]
]
l

Ethics ETHICS (Hendrycks etal, 2021a) | 15160 |
. App||cat|on scope of SOTA quantization App. D Hallucination TruthfulQA (Lin et al., 2021) 817 |
Robusiness AdvGLUE (Wang et al,, 2021) 738 |
methods Sec. 5 Dialogue MT-bench (Zbeng ct al., 2023a) 0 [T (4 SblEMB)
Sec. 6 Long-Coatext Longeval (Li et al,, 2023) 3000 | Vicuna (7B, 13B), LongChat (7B, 13B),
Mult-Doc QA (Liu et al, 2023a) 700 [ ChaeGLM (6B), Mistral (7B, 8x7B)
[=] EFel [=]
-
-
L
[=] .
Paper link Open source
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>

Evaluating Quantized Models

« Effects of Quantization on Tensor Types

» The larger the model size, the higher the tolerance for Weight and KVcache Quantization,
and the lower the tolerance for Activation Quantization.
« The larger the model size, the fewer outliers in the Weight and KV Cache tensors, and

the more outliers in the Activation tensors.

08
0.7
0.6
»0.5
v
e
504
-
-
<03
0.2
0.1
0.0

3 s il = = ===
S S-S 0.7 o
L 2 *— e o '~—Q..‘-.... i =3 e —
‘ Z0.5
I
-8 LlaMA2-78 -@- LlaMA2-78 S0.4] @~ LaMa2-78
®- LIaMA2-70B @~ LlaMA2-70B < 3| “® Uama2-708
®- OPT-287 ®- OPT-287 @ OPT-287
®- OPT-66B ®- OPT-66B 0.2] -® OPT-668
®- Mixtral-8x78 ®- Mixtral-8x78 ®- Mixtral-8x78
®- Mistral-78 ®- Mistral-78 ° 0.1 _@- Mistral-78
FP16 w8 vi4 FP16 WEAE WA4AS WAA4 FP16 KV8 Kva KV3 KV2
Precision Precision Precision
(a) Weight-only Quant. (b) Weight-Activation Quant. (¢) KV Cache Quant.

[1] Li, Shiyao, Ning, Xuefei, et al. "Evaluating Quantized Large Language Models." ICML2024.
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>

Evaluating Quantized Models

Effects of Quantization on Emergent Abilities

The tolerance to quantization varies across the four abilities, listed in descending order of

tolerance: In-context Learning ~ Instruction Following > Multi-Step Reasoning ~ Self-
calibration.

C-MR C-MR C-MR

(a) Weight-only Quant. on LLaMA2-7B  (b) Weight-Activation Quant. on LLaMA2-7B  (¢) KV Cache Quant. on LLaMA2-7B

[1] Li, Shiyao, Ning, Xuefei, et al. "Evaluating Quantized Large Language Models." ICML2024.
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> Evaluating Quantized Reasoning Models

 Reasoning LLMs: Qwen 1.5B - 32B distilled from DeepSeek-R1

« Hard tasks (e.g., AIME) suffer more than easier ones (e.g., GSM8K)
* WB8AS8 and W4A16 is safe to use (<1% acc drop)
* W4A4 and KV4 can be still risky in practice

DS-R1-Distill-Qwen-1.58 DS-R1-Distill-Q wen-78 DS-R1-Distill-Qwen-148 DS-R1-Distill-Qwen-328
GPQA-Diamend GPQA-Diamond GPQA-Diamond GPQA-Diamond
LiveCodeBench “- LiveCodeBench s s LiveCodeBench onss LiveCodeBench e
e '__,/"';‘ -a:‘ > “e / - r"’
/ | |
‘ \ J
\

/ ‘
¥ e GSMEK { s GSMEK e GSMEX ,} ez GSMEX
/
ney s l we e /
P ‘
AME-120 \ AIME-120 Y \ AME-120 AME-120
> L

» R "~
MATH-500 MATH-500 MATH-500 MATH-500

AWQ-W3G128 -+ AWQ-W4G128 KVQuant*-KV3 KVQuant*-Kv4 FlatQuant-W4A4KV4 + FlatQuant-W8ASKVS BF16

[1] Liu, R., Sun Y., Zhang M., Bai H., et al. "Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models". COLM 2025.
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>

Evaluating Quantized Reasoning LLMs

The scaling effect of quantized reasoning LLMs

* (a) & (b): Large quantized LLMs are preferred to small BF16 LLMs w.r.t. size and latency
* (c) Test-time scaling: higher accuracy with more reasoning tokens, but at a slower rate

when compared to BF16 models

|
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>
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P DS-R1-Distill-Qwen-78 4 DS-R1-Distill-Qwen-78
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o wei2e
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Average Reasoning Tokens

(c) Test-time Scaling

[1] Liu, R., Sun Y., Zhang M., Bai H., et al. "Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models". COLM 2025.
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Menu of Techniques

Model Compression

» Sparse Attention

Model Compression
reduce model redundancy in a
static manner

|
|
Model- Dynamic Inference | Dynamic Inference
|
|
|

reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Structure Design
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> Model-level: Sparse Attention

« Sparse Attention

« Omit certain attention calculations
« to enhance computational efficiency: saving computation on S and O

S = QK”', A =softmax(S+ M), O = AV

« Static vs Dynamic Mask
« Static Mask: the attention mask is predefined and remains fixed.
« Dynamic Mask: the attention mask is determined online based on the input.
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> Model-level: Sparse Attention

o Sparse Attention [ ] tocal | | global [ Jrandom | dilated rate 1/2/8
» Sparse Pattern: local, global, random, dilated
o : block size {

* Granularity: blockwise ]

* Token pruning vs clustering vs merging -
Dretained Dpruned Dclustero Dclustem
LI T T T T T1] L (TP ][]
token { : [ : N\ ED:D
Token pruning Token clustering Token merging
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> Sparse Attention

* Representative studies

Mask Generation Sparse Pattern
Static Dynamic| Local Global Dilated = Random Clustering Pruning  Merging
Traizfaorrsriers v v v v
StreamingLLM \ N N
BigBird \ V V \
Spatten ~ N
Reformer \ \
H20 \ N N
MoA v v v
NSA ~ N N N

[1] Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv preprint arXiv:1904.10509 (2019).

[2] Xiao, Guangxuan, et al. "Efficient Streaming Language Models with Attention Sinks." The Twelfth International Conference on Learning Representations.

[3] Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." Advances in neural information processing systems 33 (2020): 17283-17297.

[4] Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head pruning." 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2021.

[5] Kitaev, Nikita, Lukasz Kaiser, and Anselm Levskaya. "Reformer: The Efficient Transformer." International Conference on Learning Representations.

[6] Zhang, Zhenyu, et al. "H20: Heavy-hitter oracle for efficient generative inference of large language models." Advances in Neural Information Processing Systems 36 (2023): 34661-34710.

[7]1 Fu, Tianyu, et al. "Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.

[8] Yuan, Jingyang, et al. "Native sparse attention: Hardware-aligned and natively trainable sparse attention." arXiv preprint arXiv:2502.11089 (2025).

Page 89



>

StreamingLLM

» Sparse Attention: StreamingLLM

» Sliding-window attention
mechanism discards part of the
long-term historical information
that is rarely needed, but this
often results in severe
performance degradation.

Motiv
ation

Wikitext PPL
5158

L cached
tokens

» Key finding: LLMs tend to assign
attention scores to the initial
tokens (attention sink).

» Therefore, StreamingLLM not only
retains sliding-window attention but
also preserves the attention scores
of the initial tokens.

]

l; Wikitext PPL
5.40
A
, Attention Sink

[1] Xiao, Guangxuan, et al. “Efficient Streaming Language Models with Attention Sinks.” ICLR 2024.
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>

MoA

« Sparse Attention: MoA

Motiv

ation

5
- C
€
q,Q.
=0
<

 Existing methods apply a
homogeneous sparse mask to each
attention head, which fails to capture
the diverse attention patterns in
LLMs and consequently leads to a
significant drop in model
performance.

StreamingLLM [2] with
fixed-length local attention and
global attention on the initial tokens |~ ]

homogeneous
sparse mask

{ Different attention heads have
different attention spans, requiring
heterogeneous sparse attention.

Layer 17 Head 29 Layer 2 Head S Layer O Head 21

BN !
Sw 0 ) « R i
ot n -
ek (b™ [
.QI;h.x';. P I E ] Ah ”I l “‘: N '
Long Input - Different input lengths

have different attention
span growth patterns,

N

Short||nput /

growth rules.

\r',) ' requiring appropriate length

[1] Fu, Tianyu, et al. "

Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.
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MoA

« Different attention heads: require searching for different sparse attention span.
- Different input lengths: require searching for suitable attention span growth rules for
different attention heads.
Heterogeneous search space Analyze attention value importance Optimization
Construct a search space of sparse Based on gradients, analyze the impact of Formulate an optimization problem to
schemes that includes different sparse different attention values on the prediction select sparse patterns under sparsity
attention patterns and their variation results, and obtain the accuracy—sparsity  constraints, minimizing the impact of
rules with sequence length. trade-off curve for different sparse schemes. sparse attention on accuracy.
search space galibration profile optimize n
ataset | head 1 - : M
A 2 del with
g k sk G FE, inputs head 0 gfc;efer;}ﬂM)oA I
8 attention | 1.0 Jhj Minimize loss head 1
o span [T OO/ under density | head 0
) Po— constraint DD
83 supervision 05 loss . [h
I ot
Q = o
© LLM E:> o |:|l > : =
< - | || 0.0 \ 2 =5
ve g (8] attention Kl | By
elastic —{T] influence | avg. density ==

[1] Fu, Tianyu, et al. "Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.
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MoA

Increase the inference throughput by about 7x.
Expand the effective context length by 3.9x.

Accuracy-Throughput

Methods: = MoA = H20 s StreamingLLM
== BigBird === InfLLM

Density: @ 75% A S50% W25% @15%

1.00
g
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g
= 0.50 \ I
]
= 025
&
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0 350 700 1050 1400
Throughput (token/s)

Vicuna-7B, 8K input length

Needle-in-a-haystack Task

- Streamingl LM

7L 3.9x

Effective context length

Retrieve Acc. T

256k

MoA

Attention 32k 64k 128k 256k
Oniginal 098 093 0.76 037
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Extrapolatable input length
1.00 0.92 0.83 0.46

Long Context Understanding Task
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it u ?r “ "f \s‘
¢ *Improvement
AN S e 27 7-70B models
) 50% sparsity

Efficiency

1.7x-1.9x

Throughput Improvement
Compared with VLLM on
7B and 13B LLMs using
50% attention sparsity on

A100-80GB GPUs

“
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[1] Fu, Tianyu, et al. "Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.
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> NSA

« Sparse Attention: NSA

. . » Use different sparse patterns and enable
Motivation m end-to-end training.

« Applying sparsity post-hoc forces ESSEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
H H k:‘ y U to Continuous Blocks
models to deviate from their Y HTTIOT TN LT T
pretrained optimization trajectory and L

causes performance degradation.

@ Slldlr\g

r

H
- qe Compressed Attemtion 1} Selected Attention Sliding Attention

E
E

1. Token Merging 2. Token Selection 3. Local

Merge multiple I Retain only the most I Attends to nearby
Training: Inference: tokens into coarse I important tokens to I tokens within a
Dense attention Sparse attention representations. I apply on fine-grained |  sliding window.
| |

attention.

[1] Yuan, Jingyang, et al. "Native sparse attention: Hardware-aligned and natively trainable sparse attention." arXiv preprint arXiv:2502.11089 (2025).
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Menu of Techniques

Model Compression

*  Weight Pruning

Model Compression
reduce model redundancy in a
static manner

|
|
Model- Dynamic Inference | Dynamic Inference
|
|
|

reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Structure Design
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Model-level: Weight Pruning

» Weight Pruning

« Remove less critical weights and structures from models

Unstructured Structured
Pruning Pruning

Granularity

Performance
loss

Actual speed-up
on hardware

Research
directions

Representative
Studies

Individual weight values

Low

No

(1) accelerate pruning process

(2) design effective pruning
strategies (e.g., pruning metrics,
pruning ratios)

SparseGPT, Prune and Tune, ISC,
BESA

Structural units, e.g., channels,
layers, experts

High

Yes

(1) decide structured pattern
(2) design effective pruning
metrics

LLM-Pruner, LLaMA-Sheard,
ZipLM, LoRAPrune, EEP

o .
Lag
0O

Unstructured Pruning
Granularity: Weight

00
000
000

Structured Pruning
Granularity: Channel/Group/Layer
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SparseGPT

« Removing weights and updating the * Incrementally prune weights in each column of the
remaining ones to compensate for the weight, using a sequence of Hessian inverses,
and updating the remainder of the weights.
error. e
O = — e — . H}
T~ T A B
ategory = | . || BEEH
B 1L/ - m
| = ! y
* Type: Unstructured Pruning (...,: | ml)* = n=n (.H,T,.
* Granularity: Individual weight values | |
(Hy,,)"' = (B- —-BuBy), . B = (Hy,)"

[1] Elias Frantar, et al. “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot” ICML 2023.
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> SparseGPT

one shot with a negligible increase in perplexity

hours, removing more than 100 billion weights.
Table 2. ZeroShot results on several datasets for sparsified variants of OPT-175B.

| Method | Spars. | Lamb. | PIQA | ARC-e | ARC-c | Story. | Avg.
| Dense | 0% | 7559 | 81.07 | 71.04 | 4394 | 79.82 | 70.29
| Magnitude | 50% | 00.02 | 5473 | 28.03 | 25.60 | 47.10 | 31.10
SparseGPT | 50% | 78.47 | 80.63 | 7045 | 43.94 | 79.12 | 70.52
SparseGPT | 4:8 80.30 | 79.54 | 68.85 | 41.30 | 78.10 | 69.62
SparseGPT | 24 80.92 | 79.54 | 68.77 | 39.25 | 77.08 =69-—

* High Sparsity, Low Accuracy Loss: Prunes OPT-175B to 60% sparsity in

* High Efficiency: Process the 175-billion-parameter models in under 4.5

*  Magnitude

03 04 05 06 07 08
Sparsity

[1] Elias Frantar, et al. “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot” ICML 2023.

Page 98



LLM-Pruner

« Identify and remove non-critical, coupled * LLM-Pruner automatically identifies and

structures. removes non-critical, coupled structures
based on gradient information, and recovers
performance using a LoRA with a small
dataset.

lul-am

Compression
Category Ho R He 252 §e 220 )ece
é’:‘ (i) Thaw DEXT 3. DG Corpus :}. Task Dutaset g]_u DO@
Q 35 dns (4 Gy
* Type: Structured Pruning arall [TV BT )ooc

model )bcu(l(ﬂi

* Granularity: Head, Channel LS B TN Frian
I I ity snusad I being bived
tilt, which 1s a result of a sumber of factors. When the and unstable However, s story s much more
somer was baalt in the twelfth centuey, the soul bencath fascinating Although construction began in 1173, the
1 was expremedy soft, allowing the buttresses 10 settle tower was mever meant to be ilted I simply became
wevenly. This resulted in a tilt towards cne side that wary becane it was built om umtable ground

[1] Xinyin Ma, et al. “LLM-Pruner: On the Structural Pruning of Large Language Models” Neurips 2023.
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> Channel Permutation for Better N:M Sparsity

Find a permutation strategy that preserves more important parameters under N:M sparsity

Score Matrix § Total sum of score: 83.7
13|19(02|12[42(35[52|06 1319 4.2 5.2
04|11[15(69|08|67|54 88| Direct 2:4 Sparsity 15[ 6.9 6.7 8.8
02(13[80(08|42|13]76]97 13|80 7697 2:4 Spar5|ty
15|06 [13]|05[8842[89|89 15 13 89|89
2 zeros out of every 4

Channel Score 3.4 4.9 110 9.4 180 157 27.1 28.0

Sortedindex 8 7 s 6 3 4 2 1 contiguous elements

Heuristic Channel
Allocation

|1 3 s 7|2 a 6 8| |2 a4 s 7|1 3 6 8|

4.2 19|52 |35 52|35 4.2 13

3.3 1.5 6.7 | 6.9 Linear Sum 54|67 8.8 6.9

9.7 8.0 7.6 | 1.3 Assignment 7.6 8.0 9.7 | 4.2

89| 8.8 89| 4.2 89| 4.2 89| 8.3
Total sum of score: 96.1 Total sum of score: 102.3

[1] Zhang, Y., Bai, H., et al. "Plug-and-play: An Efficient Post-training Pruning Method for Large Language Models". ICLR 2024.
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Menu of Techniques

Model Compression

« Sharing

Model Compression
reduce model redundancy in a
static manner

|
|
Model- Dynamic Inference | Dynamic Inference
|
|
|

reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Structure Design
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> Sharing

e Definition

Reuse parameters, states, or intermediate results across different parts of the model.

e Shared Tensor Type
J Shared Tensor Type
>  Block  «1- Kg’hC?Che Weight KV Cache
weight -, : oS Subformer \
Sharing e :
"y Block ! MobileLLM \
— ! Dynamic layer tying \
: LCKV v
|
N ! CLA N
Block <!

[1] Reid, Machel, Edison Marrese-Taylor, and Yutaka Matsuo. "Subformer: Exploring weight sharing for parameter efficiency in generative transformers." arXiv preprint arXiv:2101.00234 (2021).
[2] Liu, Zechun, et al. "Mobilellm: Optimizing sub-billion parameter language models for on-device use cases." Forty-first International Conference on Machine Learning. 2024.

[3] Hay, Tamir David, and Lior Wolf. "Dynamic Layer Tying for Parameter-Efficient Transformers." The Twelfth International Conference on Learning Representations.

[4] Wu, Haoyi, and Kewei Tu. "Layer-Condensed KV Cache for Efficient Inference of Large Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2024.

[5] Brandon, William, et al. "Reducing transformer key-value cache size with cross-layer attention." Advances in Neural Information Processing Systems 37 (2024): 86927-86957.
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>

MobileLLM

* MobileLLM

* Weight sharing between two
adjacent blocks avoids weight
movement, requiring only
computing the block twice
and incurring minimal latency
overhead.

MHSA+FFN

Input

Block

* Type: Weight Sharing

Block

Output
(a)

Input

Block
Output

(b)

Immediate block-
wise sharing

« Design three different weight-sharing strategies:

Input

Output
(c)

Repeat-all-over
sharing

Input

Output
(d)

Reverse
sharing

[1] Zechun Liu, et al. “MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases” ICML 2024.
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> LCKV

« Layer-Condensed KV Cache

* Existing methods focus on compressing the
KV cache sequence length.

* This approach reduces the number of
cached layers, not just the sequence length.

* In LCKV, all layers attend to only the top

layer's KVs.
* A few "warmup" layers with standard

attention are kept to maintain performance.

Xo X3 X4 X X3 X4
i i : i i
-0 o0
X X3 " X3 X, X t X3
(a) Standard transformer (b) Our model

[1] Haoyi Wu, et al. “Layer-Condensed KV Cache for Efficient Inference of Large Language Models” ACL 2024.
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Menu of Techniques

Model Compression

Model Compression
reduce model redundancy in a
static manner

: Knowledge Distillation
Model- Dynamic Inference | Dynamic Inference

reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Structure Design
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Knowledge Distillation

* Motivation

Although the compressed lightweight model achieves better hardware efficiency, its accuracy is
lower under conventional training methods. It is necessary to design training approaches to
achieve better accuracy recovery.

 Definition

Knowledge Distillation: Use a teacher model to guide the training of a student model, enabling
the student model to learn the “knowledge” of the teacher model to help improve its accuracy.

generating soft targets

—

S

training the student

\ 4

Teacher Student

backpropagation

The teacher model (large) helps the student
model (small) recover accuracy.
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>

Knowledge Distillation

« Aligning Objective

.

Teacher Student
Block 1. Feature | Block
Block  Block
+ |
Blick | Bléck
| Lo¢its < 2. Logits »  Logits |
( bata ep2DalE e

Objective

Feature

Logits

Data

TED
MiniLLM
GKD
DISCO
MCKD
DeepSeek-R1

\/

J

[1] Liang, Chen, et al. "Less is more: Task-aware layer-wise distillation for language model compression." International Conference on Machine Learning. PMLR, 2023.
[2] Gu, Yuxian, et al. "MiniLLM: Knowledge Distillation of Large Language Models." The Twelfth International Conference on Learning Representations.
[3] Agarwal, Rishabh, et al. "Gkd: Generalized knowledge distillation for auto-regressive sequence models." CoRR (2023).
[4] Chen, Zeming, et al. "DISCO: Distilling Counterfactuals with Large Language Models." Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023.
[5] Zhao, Jiachen, et al. "Multistage collaborative knowledge distillation from large language models." arXiv preprint arXiv:2311.08640 (2023).

[6] Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in lims via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).
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Menu of Techniques

Model Compression

Model Compression
reduce model redundancy in a
static manner

|
|
Model- Dynamic Inference | Dynamic Inference
|
|
|

reduce model redundancy in a Module-dimension
dynamic manner ) .
Model-dimension

Structure Design
design novel structure, which often
require training

Structure Design

Page 108



> Model-level: Dynamic Inference

 Motivation & Definition

* During neural network inference, not all data needs to go through the same
computation flow. The core design idea of dynamic inference algorithms is to
determine the required computations based on the runtime input data.

* What is the data granularity for dynamic inference (e.g., query-level, token-level, etc.)
* Which dimensions are dynamically adjusted (e.g., layer, model)

* How to dynamically adjust the corresponding dimensions based on input data (e.g., training

a router)
______ ! (a) question: Compute 99992 - 9998x1000.
() (] : LLM: Okey, let's 99992 is hard
M\ . ¢ SLM: Okey, let us 99997is 99
pras identical v neutral v divergent X

MoE: Token-level dynamic module routing  R2R: Token-level dynamic model routing

[1] Dynamic Neural Networks: A Survey, Han et al., IEEE Transactions on Pattern Analysis and Machine Intelligence.
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> Mixture-of-Depths

* Mixture-of-Depths

* In language modeling, not all tokens
and sequences require the same time
or effort to accurately make a
prediction.

- Data Granularity: token-level
 Dimension: layer
* Method: training a router

* At specific layers, a learned router selects the
top-k most important tokens to be processed
by the self-attention and MLP blocks, while
other tokens bypass these computations
through a simple residual connection.

Token-cholce routing Expart<hoke rowsing

Expert.choice MoD

Expert 1t Eaxpen 2 »

[1] David Raposo, et al. “Mixture-of-Depths: Dynamically allocating compute in transformer-based language models.” ArXiv 2024.
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>

RouteLLM

e RouteLLM

* Direct simpler queries to smaller
models and more complex ones to
larger models to balance response

quality with cost efficiency.

one.

« Granularity:query-level

 Dimension: model

* Method: similarity-based
retrieval / training a router

* routers outperform
random baselines

e RoutelLLM trains a router model on human
preference data to intelligently direct queries to
either a strong, expensive LLM or a weak, cheap

~= Random
Matrix Factorization (A)
—— BERT (A)

Mixtral 4 —— Causal LLM (A)

0 20 40 60 80 100
% Calls to GPT-4

[1] David Raposo, et al. “RouteLLM: Learning to Route LLMs with Preference Data.” ArXiv 2024.
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> Recent Work: SLM-LLM Mix Inference (R2R)

Use small language model (SLM) and LLM for different reasoning steps

Fast but weak SLM
slow but strong LLM

Tested results on AIME’24-25
Latenc
m

R1-1.5B = 9% © 199

LLM R1-32B © 45% & 498

We should selectively use SLM and LLM for
different generation steps, constructing a fast and
strong mix-inference method

Given same context, SLM and LLM
predictions are often identical

question: Compute 99992 - 9998x1000.
LLM: Okey, let’'s
SLM: Okey, let us
identical v neutral v

99992 s hard
99992is 99
divergent X

» 89% identical predictions
* 11% different predictions

5% * some are neutral, like
89 11 divergent . .
- alternative expressions
ideffigal  difffent nGeu/t(.‘)raI o 0n|y few diverge the

meaning, logic, or
conclusion of reasoning

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurlPS’25. [Under Review]
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>

Recent Work: SLM-LLM Mix Inference (R2R)

Label divergent token, then train a neural token-router,
utilizing LLMs only for path-divergent tokens during SLM generation

Label divergent tokens
m generate model preference training data

Query Compute 99997 - 9998x1000.

L'u"“w” Let s think step by step 99 ¢ is hard re write it
stopt: o > . . . . . . o™ . . .
SLM prefil Let thnk step Dby slep . 9 9 L] 93 , e wite
step2: O Let : + think about it step by step

LLM continuation @ Let s think step by step 99 99 2 3 + G801

stepd: @ Verify Let's think and Let us think about it step by step neutral
verify @ Very 9999 s hard rewrite @ and 99997 is 999801 3 divergent
output label SIM SN SV SLM  SLM  SIM SN SLM  SLM  SLM  SIM LM SLM  SLM SN SWe
Key idea:

Step1. find all predictions where SLM-LLM differ

Step2. from the difference, let LLM continue generation until the end
of current sentence, to understand difference’s impact

Step3. ask another LLM to verify if difference causes divergence

Train neural router,
W route to LLM for divergent SLM tokens

input: |It's

SLM: | 99 | P rep write |
v v v
LLM:
output: hard N re write

Routing scheme:

We train a 56M neural router

Given SLM output token & its last-layer hidden states,
it classifies whether this token is divergent,
Immediately route to LLM if predicted as divergent

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurlPS’25. [Under Review]
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Experimental Results

Mixing R1-1.5B & 32B, uing R2R with 5.6B avg. activated param. per token

achieve performance exceeding R1-14B

Performance-Efficiency
w Pareto Frontier
same avg. parameter, better accuracy
AIME %0 UveCodeBench % GPQA
— b P i
— “ > //
/’/ = 0

"O 140 20 15 0 140 320 1 10 140
¢ Tokon tvated Paramete ) y Pacarmet

For R2R-5.6B (mix R1-1.5B & 32B)

Comparing R1-14B, 1.50x speedup, 1.07x accuracy
Comparing R1-32B, 2.76x speedup, achieving 92% of
its accuracy with only 11%-15% LLM usage

source
code

Reaching 84.3 token/s

on two A800-80GB GPUs

R1-32B R2R

Finished in: 1min 12s Finished in: 32s ‘7

Y 4

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurlPS’25. [Under Review]
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Menu of Techniques

Model Compression

Model Compression
reduce model redundancy in a
static manner

|
|
Model- Dynamic Inference | Dynamic Inference
|
|
|

reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Structure Design
Mixture-of-Experts (Efficient FFN)
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> Model-level: Efficient Structure Design

« Efficient structure design
« Efficient FFN design: Mixture-of-Expert (MoE, one common architecture

follow the dynamlc inference Idea) ° Expert module to process different inputs
"EE?ID yICIZIZFIZEI Shared expert: an expert module that is always
: P : active for every input
— — ®  Expert granularity: the FFN intermediate
H - gt 3 i TR : hidden dimension
s : :‘ LR [ﬁk PN fina @ N2 L] Fine ‘:]
t SRR ST 8 . . .
Sochng FPN Lave p=085 i \L Y’ ® Router: direct the input to the appropriate
s [ — — ] expert networks
f ' S s Basically, each token is routed to a fixed
Self-Atention —_— A3 + Nomaize — number of experts based on scores
! f f produced by the router.
s — ® In training or multi-batch inference scenarios,
Postionst ¢ P load balancing among experts also needs to be
nEIIE‘lII »TIT0 considered.[]
More Parameters

[1] Mu, Siyuan, and Sen Lin. "A comprehensive survey of mixture-of-experts: Algorithms, theory, and applications." arXiv preprint arXiv:2503.07137 (2025).
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>

MoE

* DeepSeekMoE

* The designated expert will intend
to assemble different types of
knowledge in its parameters,
which are hard to utilize
simultaneously.

» Multiple experts may converge in
acquiring shared knowledge in
their respective parameters,
leading to redundancy in expert
parameters.

« Segment the experts into a finer grain by
splitting the FFN intermediate hidden dimension.

* Isolate certain experts to serve as shared
experts that are always activated.

(a) Conventional Top-2 Routing wessp (b) + Fine-grained Expert Segmentation s (c) + Shared Expert Isolation
(DeepSeekMoE)

..................

[1] Dai, Damai, et al. "DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models." Proceedings of the 62nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). 2024.
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= Efficient Attention mechanism

« Efficient structure design
« Efficient Attention mechanism

NN Cached During Inference
Multi-Head Attention (MHA) : Grouped-Query Attention (GQA) : Multi-Query Attention (MQA) ! Multi-Head Latent Attention (MLA)

1
NNNSNNRRN ! N § 8§ B | 3 "MMANNNANA[T—
Values I § § § § I § I '
SNNNNNDNN ! N D N N ! N guuduuuu prolecnon
i FoF o F§i @i | ; ; ] | ] PSSP EE! N
NNNNNNNN 1 N N N N 1 N 1 N
«NNNNNNRN ! N N N N | AR TR ——
SODNNNNDN ;, N N N B , N yduuuuuu U G csed
| 1 u“- '"" .......... | Latent KV
I I NN nne
I I IVUuUuUuUuUuUyU
' 1 L
Divide query heads Different heads Low-rank compression for keys
into G groups, each share a single set  and values to reduce KV
of which shares a of keys and cache.
key and value head. values.

[1] Liu, Aixin, et al. "Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model." arXiv preprint arXiv:2405.04434 (2024).
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> Model-level: Efficient Structure Design

« Efficient structure design

* Non-Transformer architecture design
« State Space Model (SSM)
» core idea: compress token information into hidden state

fit

coef,

01
(4) B) e I L1
Discrete-time HiPPO Recurrence ... L S— o

Continuous-time HIPPO ODE

G—
vy = AxCx + B dscret
= Axci + Bl peretie () = A + BOS©)

| Research directions:
: 1. Design better parametrization or initialization strategy.
1 2. Design better model architecture based on SSM.
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> Mamba

 Mamba
« Linear-time-invariant (LTI) m * Let the SSM parameters be
SSMs cannot efficiently fLTI”Ct'_OnStr?f the ('jnFI)l:t,
select data in an input- allowing the model 1o
dependent mannerF.) selectively propagate or
forget information
Copying depending on the current
ouprt NANNANQNOAN---NNEBENER token.
v EEEEO00--00EEEE == éa
Selective Copying
ovow IEENEEEE--SISEENE @ ?
vt OECOOEED-B]NEEE T—| | S———— d
H3 ® Gated MLP . Mamba

[1] The router can direct simpler queries to smaller models and more complex ones to larger models, thereby balancing response quality with cost efficiency.
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Menu of Techniques

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.

| Operator-Level Opt. I

System- Framework-Level Opt. I

level |
Hardware-Level Opt.

l ___________ —
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> Design Space

« System Design: Operator-level Optimization

Al algorithm max. utilization,
s.t.usage < resource.
PR —
I
Software 1! Model [ Operator-level Optimization ]
I
Level :
I
I
: Computation graph and operators Computation o
L Graph perator
: §
: Intermediate representation
W and hardware instructions
N
Hardware - )
Level Operator Computation Memory
Hardware Fusion Opt. Opt.
- V.

2025/11/8 Xuefei Ning @ NICS-efc Lab



Operator-level Optimization

Optimizes the hardware utilization by tailoring
workload mapping to hardware specifications

Add & LayerNorm

__{_Multi-head Self-Attention :‘:
Rl S = i
\ Attention Operator

Lowe 1T we 1T w |
J N

A transformer block

*Matmul: Matrix Multiplication

Matmul Operator

Main Operator of NN
with Highly Optimized
Linear Algebra Libraries

FlashAttention

( NeurlPS 22)
Reduces the
memory footprint
by fusing attention
into one kernel

( MLSys 24)

FlashDecoding++

Reduces the update overhead of
attention operator and optimizes

GEMM in decoding, achieving up
to 4x end-to-end speedup

Core of Transformer

Achieves over 90%
peak utilization of
Tensor Cores

Xuefei Ning @ NICS-efc Lab

P — F—
cuBLAS FlashDecoding
( ~2007-present ) (arXiv 23)
NVIDIA GPU’s Uses sequence
official library partitioning for

decoding,
achieving up to 50x

speedup for long
texts

Flashlinfer

( MLSys 25 Best Paper )
Dynamically aware

workload allocation and

using unified mask
representation
13%-69% e2e speedup
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> Matmul Operator

- Implementation of Matmul on GPU
C4X4 — p4x4y gax4

- Observation: No dependencies in C,

B
— Parallel computation
- Method: Each thread loads a row of A and a
column of B - computes — writes to C
Computational-to-Memory Ratio A C

An important metric for measuring GPU utilization
Higher value — Higher compute unit utilization

A 4

. computation amount
Comp-to—Mem Ratio = v

B e _

Comp-to-Mem Ratio is only 0.25FLOP/Byte in this example

A 4

2025/11/8 Xuefei Ning @ NICS-efc Lab Page 124



> Matmul Operator

- Implementation of Matmul on GPU
Operator Implementation: CA*4 = A1*4x pAx4
__global__ void MatMul(int *A, int *B, int *C, int width) {

B
int row = threadldx.y;
int col = threadldx.x;
if (row < width && col < width) {
int sum = 0;
for (int k = 0; k < width; k++) { A C
sum += AJrow * width + k] * B[k * width + col];
} >
C[row * width + col] = sum;
} >
¥

2025/11/8 Xuefei Ning @ NICS-efc Lab Page 125



> Matmul Operator

- Computation Optimization: Tiling

« Motivation: Maximize GPU compute utilization C** = AY*xB**4

B
* Method: Increasing tile size.
Example: 1 thread — 2 rows of A & 2 cols of B
— 4 elements in C
Tiling raises Comp-to-Mem Ratio to A C

0.5FLOP/Byte

\ 4

! Qversized tiles reduce parallelism. The
key is balance.

/2

2025/11/8 Xuefei Ning @ NICS-efc Lab Page 126



Matmul Operator

- Computation Optimization: Tiling
Operator Implementation:
__global__ void MatMulTiling(int *A, int *B, int *C, int width) {
TILE_ WIDTH=2
int tx = threadldx.x; int ty = threadldy.y;
for (inti=0;i<TILE_WIDTH; i++) {
for (intj=0;j < TILE_WIDTH,; j++) {
introw =ty * TILE_WIDTH + i;
int col = tx * TILE_WIDTH + j;

int sum = 0;
for (int k = 0; k < width; k++) {
sum += AJrow * width + k] * B[k * width + col];
}
Clrow * width + col] = sum;
}
}
}

2025/11/8 Xuefei Ning @ NICS-efc Lab

CAX4 — fax4 sy pixa

B

\ 4
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Matmul Operator

-  Memory Optimization: Using Shared Memory

* Motivation: Enable data sharing and fast communication

between threads

* Method: Load A and B into shared memory for reuse

— reduce global memory access

Comp-to-Mem Ratio reaches 1FLOP/Byte

2025/11/8

A

CAX4 — fax4 sy pixa

( B!
1 |
)

\ 4

Stope i SYEM

(Fhared rner

nor)[)

Xuefei Ning @ NICS-efc Lab
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> Matmul Operator

- Memory Optimization: Using Shared Memory

Operator Implémentation:

__global___ void MatMul_shared(int *A, int *B, int *C, int width) {
__shared___ int sharedA[width][width];
__shared___int sharedB[width][width];
int tx = threadldx.x; int ty = threadldx.y;

sharedA[ty][tx] = Alty * width + tx];

sharedB|[ty][tx] = B[ty * width + tx];

__syncthreads();

for (inti=0;i<TILE_WIDTH; i++) {
for (intj=0;j < TILE_WIDTH; j++) {

for (int k = 0; k < width; k++) {
sum += sharedA[row][k] * sharedBlk][col];
}C[row * width + col] = sum,;
}
}
}

2025/11/8 Xuefei Ning @ NICS-efc Lab

CAX4 — fax4 sy pixa

A
i A 4
( [
' T T <%0
1 1 1 b
Stoye in SMEM

(Fhared rnemor)[)
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> Matmul Operator

- Special Hardware: using Tensor Core
 Why: CUDA Cores bottleneck at large-scale matrix ops in deep learning
° Ten sor c ore: Pascal Volta Tensor Core
| ssfadn,  sasEadn
* NVIDIA's dedicated DL cores. : The V100 GPU uses
o : T C hi 2
» First introduced in Volta (2017) Sili‘ﬁu:g‘iif %éeﬁ;onf

* Input: 16bit — Multiply-accumulate — Stored in 32-bit registers

A ’i B]"O A ’i Bj,l A ‘i Bj’z A 'i Bj'3

[1] https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

2025/11/8 Xuefei Ning @ NICS-efc Lab Page 130



Special Hardware: using Tensor Core

CUDA provides mma.h and wmma API for Tensor Core operations

Pesudo code :

#include <mma.h>
__global__ void MatMul_mma(half *a, half *b, float *c, int M, int N, int K) {
// Declare fragments (16x16x16 tile size)

}

2025/11/8

wmma.
wmma.
wmma.

wmma.
wmma.
wmma.
wmma.

wmma.

-fragment<wmma::matrix_a, 16, 16, 16, half, wmma::row_major> a_frag;
-fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b _frag;
-fragment<wmma::accumulator, 16, 16, 16, float> c_frag;

fill_fragment(c_frag, 0.0f); // Init accumulator
:load_matrix_sync(a_frag, a, K);

:load_matrix_sync(b_frag, b, N);

:mma_sync(c_frag, a_frag, b_frag, ¢ frag); / MM on Tensor Core

:store_matrix_sync(c, c_frag, N, wmma::mem_row_maijor); // Store result

Xuefei Ning @ NICS-efc Lab

Matmul Operator
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>

Decoder-only LLM Inference

* Decoder-only LLM Inference: Two distinct phases
 Prefill phase: Handling input prompts, saving generated K and V in KV Cache

2025/11/8

» Decode phase: Update and use KV cache for computing Attention to generate a new token

Output: ['‘Processing’] (1*dim)
> Add & LayerNorm

| Fé2 |
73

| Activation |
7

| FC1 |
7y

> Add & LayerNorm

Output: [1]

Add & LayerNorm

(1*dim)

A
FC2

7y

Activation

7 )

FC1

7Y

Multi-head Self-Attention

o

K&

VZ §

[ We

Wi

Wy

A

)

A

Prompt: ['l', 'like', ‘natural’, language’] (4*dim)

Add & LayerNorm

Multi-head Self-Attention

J KV cache

expands with
each token

Prompt: [

Xuefei Ning @ NICS-efc Lab

‘Processing] (1*dim)
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> Attention Operator

- Prefill Optimization: FlashAttention['-2:3]

* FlashAttention optimizes attention computation in prefill phase
* One of the most widely adopted acceleration methods with 16.2k GitHub stars(#!

FLASHATTENTION: Fast and Memory-Efficient Exact Attention
with [O-Awareness
Tri Dao®, Daniel Y. Fu®, Stefano Ermon’, Atri Rudra®, and Christopher Ré*
"Department of Computer Science, Stanford University
*Department of Computer Science and Engineering, University at Buffalo, SUNY

{trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu,
chrismre@cs.stanford.edu

June 24, 2022

® Watch 124 ~ % Fork 1.5k ~ v7 Star 16.2k -

[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in neural information processing systems 35 (2022): 16344-16359.

[2] Dao, Tri. "Flashattention-2: Faster attention with better parallelism and work partitioning." arXiv preprint arXiv:2307.08691 (2023).

[3] Shah, Jay, et al. "Flashattention-3: Fast and accurate attention with asynchrony and low-precision." Advances in Neural Information Processing Systems 37 (2024): 68658-68685.
[4] https://github.com/Dao-AlLab/flash-attention
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Attention Operator

- Prefill Optimization: FlashAttention['-2:3]
«  Why : Complex Attention 1/O; Large activation memory
* How : Operator fusion, including fwd and bwd
« Results : 2-4x speedup; memory: O(N?) - O(N)

Forward pass Backward pass
AN 19TB/s (20 MB)
Worker 1
HEM: 1.5 TB/s (40 GB) Worker 2
/ \ DRAM: 12.8GBIs Worker 3
- (CPUDRAM) ¥ (>178) Worker 4
Memory Hierarchy with Worker 5
Bandwidth & Memory Size 2 % % % 2
i %, T,
FlashAttention 2 > C3 ) G 3 2 7 0»6\
Saves I/O & memory via operator fusion Tiling strategies differ between fwd/bwd passes

[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in neural information processing systems 35 (2022): 16344-16359.
[2] Dao, Tri. "Flashattention-2: Faster attention with better parallelism and work partitioning." arXiv preprint arXiv:2307.08691 (2023).

[3] Shah, Jay, et al. "Flashattention-3: Fast and accurate attention with asynchrony and low-precision." Advances in Neural Information Processing Systems 37 (2024): 68658-68685.
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Attention Operator

- Decode Optimization: FlashDecoding!'!

Prefill tiling

Using prefill
tiling directly
in decode

2025/11/8

Why: only 1 token/step in decode — using prefill tiling strategy directly causes low GPU

utilization

Attention map

Attention map

tiling

tiling

—

Xuefei Ning @ NICS-efc Lab

Fully utilizes
GPU SMs

11

SM3. SM4 idle!
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> Attention Operator

- Decode Optimization: FlashDecoding!'!

* Method: Increases matrix tile count to boost SM utilization, achieving higher GPU
efficiency

Using prefill tiling ‘ SM1 :
tiling directly — SM3. SM4 idle!

in decode ‘ SM2

1 . ‘ SM1 ;Sam:*M)ovuv' :PyTotcr Eager :FM”MNMVZOJIFMMM

tiling e o
‘5'6‘ segions 1024 :316:" :»‘B 577 7
E—) A
FlashDecoding T — a2
—> B SM3 e e fe
|B+1, seqlen=131072 | 2884 [45022 |108.6

Expand tiling - SM4 Achieves 5-10x compute speedup

dimensions
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>

FlashDecoding++

Motivation

Attention & Matmul operators still optimizable in LLM inference

Attention (FlashAttentionl)

Online Softmax — Global reduction causes
significant update overhead

@ Low Parallelism @ Update
Overhead

X=3 - . L
max(Xy, Xz, X3X4)=6 max(xy,Xz)=5 max(xs X,)=6

s(x;) s(x;) s(x3) s(x,) :’ s'(x)  s'(xs) \| s(x3) s(x.)
1
1
max(xy,Xz,X3,X¢)=
sofzma:(-;)—5"1"_'"(”=":,v,""_'"“"] ' i St .F Update
o 2B \_ sb)  ske) ' Overhead
m(x) =6

Original Softmax
All elements wait for global
reduction

Online Softmax
Global reduction via
incremental updates

Matmul (cuBLASI2, CUTLASSI3])

Inefficient tiling for “short-wide” matrices
in decode phase

LLM generation
* —
input = “Write a bubble -
Tl Ko b |7
_"’:"“:: GEMM Shape: M, K, N
( “owptzvder |V LI;IN
“1 1% generated token | |
I Decode ) By
Vo doede ) pecode 5 :
output = "def bubble” % |By B’
| 2% generated token | phase s,
J.bacols 85 8%
output = "def bubble_* | .
| 3% generated token | o
: = ) B
M dimension = batch
size > ua A Allele \
K N

[1] Dao T, Fu D, Ermon S, et al. Flashattention: Fast and memory-efficient exact attention with io-awareness[J]. Advances in neural information processing systems, 2022, 35: 16344-16359.

[2] https://developer.nvidia.com/cublas
[3] https://github.com/NVIDIA/cutlass

Xuefei Ning @ NICS-efc Lab
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>

FlashDecoding++

Suboptimal implementation against various Matmul shapes

Wrong low-level implementation choice — Significant performance loss
) M=32 =3
Various K=4096 K=5120 Shape 1: M=1, K=4096, N=4096]
Matmul N=11008 N=5120
Shapes \_ \ FastGEMV is 20% faster
__________________________ . than cuBLAS
I
I I
I @ Model ||I| 4 nput |
I specs ynamics :
I .
! Q Manual Hardware : Shape 2: M=4, K=4096, N=4096]
I implementatio capability :
bmmm - s (et Vel At Flat GEMM is 50% faster
Z Xi l than FastGEMV
Different FastGEMV Flat GEMM cuBLAS
Implementations Vector unit-based Shape-optimized General-purpose

[1] https://github.com/wangsiping97/FastGEMV
[2] https://developer.nvidia.com/cublas

[3] https://github.com/NVIDIA/cutlass

Xuefei Ning @ NICS-efc Lab
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FlashDecoding++

Leverage value distribution in LLM inference to
optimize Attention operator!']

Mathematical Equivalence &

Numerical Feasibility

[ex1—m@) | exa=m(x)] Mathematical
softmazx(z) = S eri-m(@) Equivalence
[e*179, ..., e"+~¢|r — = =~ Arbitrary max value
=TTy e 17¢ € R 1precision loss only from
' data type overflow
Llama2-7B OPT-6.7B ChatGLM2-6B
199.99% ! E T 99.99% 99.99% ! Numerical
N Feasibility
O I
I . 1

Data shows no FP32

1
1
1
1
1
'
1
1
i
1

Sy S S

| 1% ! y [91 ,4,[,“'40'2111 SR R Lkl overflow in 99.99%
1 1 1 \ 1 1
v il | L/,/ N \< ________ A / cases
t o 1 "/ m

70720 410 o 10" 40-448"40 20 0 20" 60 80 -70""20 10 o 10" a0

_0:,//

Remove Update Overhead via Preset Max

Update
Overhead
X=3 P Ay=e Ao x=3 x7=5 x4 x;~6
max(xy,X2)=5 max(xz X,)=6 Preset Max =
O T ~ 6
: sla)  s'lx) ) 8(x) s(x,) S(X;; vz vvms w{Xd)
|
Max(x;, Xz X3, X;)=6
: I Update
oSt sbe) ! yerhead

Online softmax Async softmax
Parallel but large update

overhead overhead

Parallel with zero update

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.

Xuefei Ning @ NICS-efc Lab
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FlashDecoding++

Leverage value distribution in LLM inference to
optimize Attention operatort]

Async Pipeline for Acceleration

Remove update overhead via preset max value

partial softmax. - - - - ——- ~
1
N- QxK [ max [+ exp HI sum [+ AxV |1 N+
1 - o 'j Vommmmm - - 1
Matrix/vector

Extra overhead : .
computations are sequential

) 4
Async Pipeline: Overlap matrix & vector unit usage

*| N- |0Q><K |_.exp-|l>A><v $|: N+ |o
“ | =1

Preset max value  ~—--

Recomputation for Correctness

Fallback to online softmax on overflow detection

Overflow check: Set threshold
via preset max = threshold detection

1
I Overflow | X4=3 X5 xy=4 6
Fallback max(xy,X;)=5 max(x;x,)=6
X=3 X=5 x4 x=6 |:> P S
Cos) sl |ste)  sx)
— 1
:reset Max aX(x, X3 X5, X,
s p) | ' Update
\osx) | slx) )
JF Overhea
Async softmax Online sof d

( Overflow )

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.

Xuefei Ning @ NICS-efc Lab
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> FlashDecoding++

m Leverage typical shapes in LLM inference to
optimize Matmul operator!]

Short-wide Matmul Bottleneck Analysis Adaptive Tiling + Double Buffering

B O Speﬁd“p Adaptive tiling & double buffering for different shapes

32 B4 128 256 512 32 64 128 256 512
1024 1024 By By

2048 nded 2048 nded . Be| B B, |iB«|B, B, B; B,
4096 4096 Tiling - : ‘ )
8192 8192 Strategy B’ .52.54 GPU B’ock 1: Cy=ABy + A;F, +

N 16384 N 16384 B B  [LoadA.B,| Compute [Load AsB,| ... |
32768 32768
posies o iul% E} [Load A,8,| Compute | ... |
131072 | 131072 GPU Block 2: ¢, = 4,8; + 4,8} + -
Boosts e
262144 | v 262144 GPU idl# GPU |Load A,B',| Compute [Load A,B's ... |
- 0 utilization o :
-4096 K=12288 y utilizatio [Load A,B", Compute | ... |
ER optimal By selection for given N ime n

N is large: Low Parallelism N is large: Memory-bound}| N is large: Low Parallelism N is large: Memory-bound
Need more tiles Low Comp-to-mem ratio Fine-grained tiling on N-dim for Double buffering to
sufficient parallelism hide access latency

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.
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FlashDecoding++

Leverage Matmul shape patterns in LLM inference for
dynamic implementation selectionl']

Shape Variation Patterns

4 shape categories in inference with only M
dimension varies

Observation 1:
Fixed [N, K] — only
4 combinations per

model

Observation 2:
Only M dimension

varies with input

Prefill: M=total token
count

Decode: M=batch size

N\

1
|
]
1
|
FD
|
1
1
|
]
1
)

N o - —

HD: Hidden dimension size

FD: Dimen: size after e first FEN

FO: Dlmsmvicn or Only 4 shape
SeqLen: Input sequence length categories!

Offline Table building &

Online heuristic selection

1:GEMV 2: Flat GEMM 3: cuBLAS
Vector-unit based Optimized for small General purpose
M
. : YT, 9 UTLASS.
Rows: varying M dim | Rt " "

|

| 2

! Using our flat GEMM optimization
~, »,

i points per [N, K]

For each [N, K]
Offline: fine 2 critical

Online: select based
on M value

L DT L L L O L |
‘nzzaa.«ml 4096, 4096] (11008, 4006) (4098, “MI

Columns: [N, K] combinations

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.
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> FlashDecoding++

m Throughput surpasses SOTA by over 10%
1.88x faster v.s. HuggingFace on average

Throughput Comparison on NV A100 GPU Comparsion on AMD MI210 GPU
1.24x/1.13x faster v.s. vLLM/ TensorRT-LLM 1.86x faster vs vLLM on average
throughput token/s INFINIGENCE
o} 29x 1 x B i = vLLM
X 1 20 Llama-2-7B Llama-2-78
15-+ =
2x 90
1.0x .
1x 60
L ONHEIR I=.. ILLM o @i 3 FlashDecoding++
HuggingFace LightLLM DeepSpeed VvLLM OpenPPL TRT-LLM - ey
*Test setup: L Llama2-7B, bs=1, 128 I/O tokens, single A100 GPU o - il

Page 143
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> Design Space

- System Design: Framework-level Optimization

Al algorithm max. throughput,
s.t.latency < SLO.
PR N—
I 4
Software 7 : Model Framework-level
Level [ Optimization
l \,
|
|
: Computation graph and operators
;|
i Edge Cloud
v
il . .
W Intermediate representation
l and hardware instructions
\ N
Hardware- Offload Request Memory
Level Scheduling Optimization
Hardware J

2025/11/8 Xuefei Ning @ NICS-efc Lab



Framework-level Optimization

Optimizing the system throughput

adhering to the service-level objective (SLO)

How to schedule?

or[

batching

vLLM

(SOSP 23)
Paged KV cache
Basic memory

management for LLM

Sarathi-Serve

(OSDI 24)
Mixed P/D request
batching

Basic batching method for

SGLang
( NeurlPS 24 )

Prefix caching technique
Reuses repeated KV
cache across requests

Prefill (P) Request

Request Queue

% Decode (D) Request

O]

Send
Request

User 0 «

User 1 <«

inference serving
~10x throughput
improvement

Xuefei Ning @ NICS-efc Lab

for P/D instances
Improves effective
throughput by 4.48x

Inference Engine: Parallel Strateg serving co-located systems 6x throughput
2-4x throughput 2x throughput improvement
Card, Card, I I improvement improvement
@ @
or P . p
Card, Card | Orca DistServe Mooncake
(OSDI 22) (OSDI 24) ( FAST 25 Best
Completed Continuous batching P/D disaggregated paper )
Requests Basic scheduling system KV cache-centric
method for LLM Specialized optimization

scheduling and storage
strategy based on a
disaggregated system
design
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> Offloading Techniques

- Offloading Technique: Definition and Motivation

» Definition: Offloading parts of the model (model weights, KV cache, etc.) from GPU to
other devices (e.g., CPU) for storage or even computation, to save space and improve

computational efficiency
* Motivation: The large volume of model parameters and KV cache data exceeds the

storage capacity of GPU memory Tk 3: Model parameer couing ot byer-leve (dypes BE/FP1S
Table 1: LLaMA2-13B, KV Cache size with context length e i . o '
Context length 10k 100k 500k 1000k ., e
KV Cache size 8.19GB 81.9GB 409.6GB  819.2GB . TR ‘
Misc size 26GB  26GB 26GB 26GB o
LLaMAZ2-13B: when the context length reaches

100k, the required KV cache reaches nearly 82GB,
exceeding the memory capacity of a single GPU

DeepSeek-V3: parameter size reaches 1250GB
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>

Offloading Techniques

- Offloading Techniques: Categories
Offloading Model Weights Offloading KV Cache

Representative Work: FlexGen[1]

oken O Token
- —

- —

(al uaa Ly-row s(f’edule

“"J]M@E@

(b) 2 gﬁ ak b'«xk’sc.heduk-
Adopt the Zig-zag computation order to

hide the communication time of weight
transmission

Representative Work: FastDecode[2]

G Node
S worker
Mokl e Model
Params.,
Pararen
Q
. K o, ~
= -I =
| R i1
|
B !
Q @ @t o
I | 3 K |
) m v m ol - 3
L KV-Cach L KV-Cacde l . KV-Cache
Past 1 Pant. 2 Pat )
Roworker 1 Roworker 2 Roworker 3
CPU Node | CPU Node 2 CPU Node 3

Offload KV Cache to CPUs to relieve

the storage pressure on GPUs
during the decode phase

Representative Work: KTransformers[3]

X Transformers

A Flesitle Framework or Expeviencing Cutang -edge LM Inference Optimizations

@ Watch 104 ~ Y Fork BS2 - T Star 127k

KTransformers offloads experts to
CPUs (detailed in the next page)

2025/11/8

Xuefei Ning @ NICS-efc Lab
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> Request Scheduling

- Request Scheduling

» Definition: Scheduling requests in different phases to GPU instances for batched
computation

* Motivation: Requests for LLM inference have varying lengths and distinct phases (Prefill
and Decode phases), and schedu _ 10000 ¢ ' . S

© Q/K/V/O_Prefill QKT_Prefill ® FFN_Prefill
1g~3 . le~3 . le-3 [
8 Input (avg=755 5} nout (avg=1713) | 15 1put (avg=1738.3) 1000 L B Q/K/V/O_Decode QKT_Decode B FFN_Decode
. Output (avg=200 3) 6 Output (avg=98 2) Output (avg=90.7) ; - -=~a
”

2 10 o >
i 1 100 . Decode : & Eﬂl

2 2 8 - memory-bound /

bottleneck

0 S00 1000 1500 2000 ° 0 500 1000 1500 2000 ° 0 500 1000 1500 2000

Attainable Performance (TFLOP/s)

10 © K 4
(a) ShareGPT (b) HumanEval (c) LongBench ' /,’\ Prefill:
Statistical distribution of request lengths 1 Nt Cog'pt‘t‘lte‘bol‘(‘”d
across different datasets o1 e . Poteneck
How to perform batch processing for 0.1 1 10 100 1000 10000 100000
requests with Varying Iengths? Operation Intensity (FLOPs/Byte)
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> Request Scheduling

- Request Scheduling: Batching

 Orca (G. Yu et al, OSDI'22) proposes the continuous batching technique, which batches

requests with varying lengths at the TOKEN granularity. Compared to request-level
batching, it improves throughput by 36.9x

— — — —-— —— i - - Bk e -
o Ty T3 Tq T Tg Tp Ty o Ta T3 Tq To Tg Tp Ty
Req1uest g [ 7| z Req1uest '
Request g o gJ_ Request
2 2
Request | § S; Request
3 5 |5 e 3
Request Request
4 >4 | 5y Al 4
time axis time axis
Request-level batching Token-level batching (Continuous batching)
The processing time depends on the longest Batching requests of different lengths by concatenating
request, leading to low utilization them in the Token dimension

[1] G. Yu, et al. "ORCA: A Distributed Serving System for Transformer-Based Generative Models.”, OSDI, 2022.
2025/11/8 Xuefei Ning @ NICS-efc Lab Page 149



> Memory Optimization

. Memory Optimization: PagedAttention /LLM

The growth of KV cache and memory fragmentation limit concurrency, resulting s s oem
suboptimal system throughput. N ———

*  VLLM (W. Kwon et al, SOSP’23) proposes PagedAttention,which stores KV cache in a
paged manner. This approach effectively eliminates memory fragmentation, and improves
throughput by 2—4 times.

Memory
KV KV Cache
Parameters Cache sue
(26GB, 65%) | (>30%) o
= |5 First Token
i Latency
i Per-output Token
others Size -t s
NVIDIAA100 40GB oo o Latency
KV cache accounts for a large KV cache in LLM inference grows
proportion in distributed systems. with the generation process

[1] W. Kwon, et al. ” Efficient Memory Management for Large Language Model Serving with PagedAttention.”, SOSP, 2023.
2025/11/8 Xuefei Ning @ NICS-efc Lab Page 150



> Memory Optimization

- Memory Optimization: PagedAttention

« Memory: KV cache is stored in blocks along the sequence dimension at different
physical addresses.
« Computation: During attention computation, the physical addresses of the corresponding

Physical KV blocks

{on GPU DRAM) b | e.
Key and value vectors
{ Request Prompt: ’F'our score and sew;n years ago our” Biock 0
A Outputs: “fathers” — “brought’ — ... q 7 3
& ugh 1 Block 1 e S I I@.M, Block 1 | years ago our | fathers
Logical KV blocks / Block 2
© © [0) [0) Block Table f
Block 0 Four score and seven K
|Proysical block Block 2 | brought | forth
O 0 o (G| Q[ rumer | #ed / 9/ Query [ 5
Block 1 [iyeaa | = ago | = our \ ®7 (G «\/ Block 4 vector
6] 3 . 40
Block 2 ?moym & O; 3 2 .'
Block 3 - - \ Block 6
\
\ Biock 7 [Prour [Pecore [© and I‘f')m,, Block 0 | Four score and seven
Block 8 \

Memory: Logically continuous sequences are stored Computation: Index the KV cache addresses
in. blocks a){ actual physical addresses required for computation by looking up a
' table.

[1]1 W. Kwon, et al. ” Efficient Memory Management for Large Language Model Serving with PagedAttention.”, SOSP, 2023.
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>

semi-PD

Key
Problem

Co-located and disaggregated systems for Prefill/Decode have their own
strengths and weaknesses in computation and storage.

Co-located Systems (vLLM, SGLang)

:Single Fused Instance

! Both the Prefill and Decode stages
of a request are computed and

stored within the same instance.

Representative
Frameworks

/LLM
< SGIL

it dentien e e o 1
|

| Prefil Decode

I Requests Requests

|

|

|

|

|

I Computatio

I n Fusion GPU SMs

|

- g

|

1 A4

1 Storage

I Fusion GPU HBM

|
e

Disaggregated Systems (Mooncake, DistServe)

Computation
Separation

Storage
Separation

Prefill
Requests

1 KV
jcache

GPU
SMs

GPU
HBM

T

Prefill Instance
+Decode Instance

After a request is completed in
the Prefill instance, the KV
cache is transmitted to the

Decode instance for computation.

Representative
Frameworks

Mooncake
@' deepseck

[1
[2
[3
[4

W. Kwon, et al. ” Efficient Memory Management for Large Language Model Serving with PagedAttention.”, SOSP, 2023.
L. Zheng, et al. “SGLang: Efficient Execution of Structured Language Model Programs”, NeurlPS, 2024.
R. Qin, et al. “Mooncake: Trading More Storage for Less Computation”, FAST, 2025.

DeepSeek Team. “DeepSeek-V3 Technical Report”. arXiv, 2024. Xuefei Ning @ NICS-efc Lab
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> semi-PD

Key Co-located and disaggregated systems for Prefill/Decode have their own
Problem strengths and weaknesses in computation and storage.
Co-located Systems (vLLM, SGLang)
Single Instance o T 1 Prefill Requests Decode Mixed batching of requests
. Requests
Both the Prefill and Decode phases Prefill Decode request 1/2/4 reg;:se st request 1/2/3/4/5

of a request are computed and Requests Requests

stored within the same instance. Computational resources

for each other scheduled by the compiler

\ J
I

Representativ
e Frameworks

/LLM

Pl -5

\

|

|

|

|

| . .
| Requests at different phases wait
|

|

|

|

Mixed . Computational Disadvantages
computation GPU SMs Resource contention and latency
ﬂ interference between P and D

-—-—-——’

oo T ————

O d Storage Advantages
O Shared No need to transfer KV cache
SG@, 1 Storage GPU HBM . » between P and D — High HBM
/ utilization
\\ ---------- -

[11 W. Kwon, et al. ” Efficient Memory Management for Large Language Model Servmg with PagedAttentlon SOSP, 2023.

[2] L. Zheng, et al. “SGLang: Efficient Execution of Structured Language ModeX Q%W\IR,SS 02: Lab Page 153



>

semi-PD

Key
Problem

Co-located and disaggregated systems for Prefill/Decode have their own
strengths and weaknesses in computation and storage.

Prefill Instance + Decode
Instance (P/D Instances)

After a request is completed in
the Prefill instance, the KV
cache is transmitted to the

Decode instance for

~omniitation,

Representativ Isolated
e Frameworks \‘Computation

[
E Mooncokei
1

- -

/

Isolated
Storage

—————————————

Disaggregated Systems (Mooncake, DistServe)

Prefill
Requests

[

Storage Imbalance

Computational
Advantage

Isolated computation between P
and D, with no latency
interference.

WLUT aac igauvar Ita\_.’c
Transmission overhead, storage
imbalance, and more...

|

|
Instance switching requires

transferring KV cache
switc

The P
instance
sends away
KV cache.

P Instance

D Instance N

The D
instance
stores KV
cache for long.

1

D Instance
2

[1] R. Qin, et al. “Mooncake: Trading More Storage for Less Computation”, FAST, 2025.
Xuefei Ning @ NICS-efc Lab

[2] DeepSeek Team. “DeepSeek-V3 Technical Report”. arXiv, 2024.
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semi-PD

Combine the computational advantage of disaggregated systems and
the storage advantage of co-located systemsl']

Computation Disaggregation & Storage Unification: P/D computing resources are
isolated, but storage resources are shared
Prefill
Requests P/D computing resources are isolated
and divided into different processes -
P Computational Advantage
— P/D isolated computation with no
latency interference.
Isolated
Computation
but share the same storage resources Storage Advantage
— No need to transfer KV cache
Shared between P/D; High storage
Storage utilization of HBM.

[1] Ke, Hong, et al. "semi-PD: Towards Efficient LLM Serving via Phase-wise Computation Disaggregation and Unified Storage." arXiv preprint arXiv:2504.19867. 2025.
Xuefei Ning @ NICS-efc Lab Page 155



semi-PD

Combine the computational advantage of disaggregated systems and the
storage advantage of co-located systemsl']

Isolated Computation and Shared Storage via IPC Low-Overhead Resource Adjustment Mechanism

Resident processes manage weights and KV cache storage,
eliminating the need for reloading and copying.

Isolated Prefill Process Computation Resource
Computation t2/3 Allocation Adjustment
reques Reload + Copy “
Decode Process Prefill Process
P/D uses asynchronous processes to achieve Before request 3/5 Reload + Copy  request 3/5
computation resource isolation at the SM level.
Decode Process
. —. Prefill . Resident process (broadcastifig storage address for new process)
Shared Atomic Requests
Storage Memory
Allocation Decode After _
_l | Requests Prefill Process
Atomic memory allocation is used to avoid request 3/5 request 3/5
Write-After-Read (WAR) conflicts. Decode Process

[1] Ke, Hong, et al. "semi-PD: Towards Efficient LLM Serving via Phase-wise Computation Disaggregation and Unified Storage." arXiv preprint arXiv:2504.19867. 2025.
Xuefei Ning @ NICS-efc Lab Page 156



semi-PD

Llama3 series models: 1.55-1.72x improvement in request service rate under
given SLOs DeepSeek-V3 model: 1.49-2.58x reduction in latency

Instance-Level Inference Cluster-Level Inference
Lower Time To First Token (TTFT) and Time Per Output Token (TPOT). semi-PD instances collectively participate in request routing.
sase 1600 e
VLLM-S: VLLM + SplitFuse oo . L 2P6D (P90) --m--1P3D4S (P90) —e—2P6D (P99) —m— 1P3D4S (P99)
VLLM-D: Default = T ' 6000
o 800 : = 12000
: 1200 & m 1
600 400 E
0 o - 8000
55 65 7.5 85 9.5 105 55 65 7.5 85 95 105 F 4000
Llama3-70B, ShareGPT, FP16, 4xA100 (vLLM, semi-PD), 8xA100 (DistServe) 0
SGLaNg(P90)  --m--semiPD (PI0) —e—SGLANE(PIY) —m— semkPD (PI9) 75 10 125 15 175 75 10 125 15 175
2000 500 request/s request/s
£ ) = 300 xPyDzS: x Prefill instances, y Decode instances, z semi-PD instances,
= 1000 © 200 implemented based on NVIDIA Dynamo (baseline) , DeepSeek-V2-
500 g=a---* | " 100 Lite model, single A100 per instance
0 0
8 10 12 14 6 8 10 12 14 Significant reduction in TTFT/TPOT achieved after replacing 1
Toauest/s Faquest/s Prefill instance and 3 Decode instances with 4 semi-PD instances.
DeepSeek-V3, FP16, MATH-500, 8xH200

[1] Ke, Hong, et al. "semi-PD: Towards Efficient LLM Serving via Phase-wise Computation Disaggregation and Unified Storage." arXiv preprint arXiv:2504.19867. 2025.
Xuefei Ning @ NICS-efc Lab Page 157



Design Space

« System Design: Hardware-level Optimization

Al algorithm Dense computing + High-end hardware
B Duration:
Software Mogel ’ 4 cvel
Level cycles
\ 4
. High-end hardware (4 Units)
Computation graph and operators 13
.3x
_ Sparse computing + Low-end hardware Performance
. 4 , Gain
Intermediate representation
and hardware instructions
Duration:
Hardware - 3 I
Level cycles
Hardware
Low-end hardware(2 Units)
2025/11/8 Xuefei Ning @ NICS-efc Lab




>

Hardware for Video Generation Models

Video generation is one of the important modalities,
and it is a promising path towards as the physical world’s simulators

OpenAl’s Sora model

Videos generated
by Sora are almost
indistinguishable
from real ones.!"!

Follow-ups by major technology firms

Kuaishou : :
Turnlingpiration 2

to art on Dreamina —>

ByteDance

Source: [1] OpenAl, https://openai.com/index/sora/
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Hardware for Video Generation Models

VGMs are mainly based on diffusion transformers,
composed of noising and denoising process

The structure of VGMs

(& 2
’ pr—
/
/
Noise )Y, ’l '
Portwise
Wxl2nd Radind /
s * J Foectorwart
Linear and Reshape e, 1252
' / 1
Norm
LayerNomm |/ i
—————————
- I E|!'>
N >d| DIT Block 1 fee =
.
Lo o I\ NS Head
Patchify Embed '\ e :
| I \\ Scale, Shit .h_.l
5 \ s
Noised Turactep 1 \ Larper Norm N
Latent A \ | — 1
2a32xt Label y \\ YouTokes  Congtoneg |
Latent Ditfusion Transiormer DiT Block with adaLN-Zero

At present, most of the mainstream video generation
models adopt the Diffusion Transformer (DiT) architecturel!

Diffusion

Forward diffusion (backward propagation):

Gradually add Gaussian noise of different amplitudes

Diffusion Process

f’ll“ ’l()l)

Reverse diffusion (inference): Denoise gradually

The principle is to endow the model with the ability to
generate videos through multiple rounds of noise
superposition and denoising training.

Source: [1] Scalable diffusion models with transformers, ICCV 2023.
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Hardware for Video Generation Models

Different from LLMs, the inference bottleneck of video generation models

(VGMs) has shifted from memory-bound to compute-bound

LLMs VGMs

(mainly considering the| (Temporal, spatial,
decode stage) and FFN structure)

~ 16FNd?

C tation* =~ 2
emptiation 12a%+2Nd | 2 EN(F + N)d

Memory - 2 ~ 16d?
acCess* ~ 12d* + 2Nd + 15FNd
Operational ~ 1 ~ FN

intensity (Ol)

F: Video frames. N: Tokens. d: Hidden dimension.
*Calculation of a single block/layer.

—Compute

g 8

wn
o

Latency breakdown (%)
[y
o 8

C—Memory [Others =—e=0l
: @)
0|I:>etrat|c.>tnal : 450 =
ntensity 300G
>
I 0 <
AR 3
1 [ ==
Re)
: ®
| a
LLM-1 LLM-2 , Latte Open-sora (@)
LLMs VGMs
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> Hardware for Video Generation Models

H.262/MPEG-2 [1995] H.264/MPEG-4 [1996]
H.261 [1988] Developed for TV The most used video
i q q broadcasts and DVD- codec today, max
Irst modern an Video playback, max resolution

useful cadec, max resolution 1920*1080

resolution 352*288 O

- I

O H.265/HEVC [2013]
MPEG-1 [1993] H.263 [1996] Further reduce the
. . video size, enables
Compressed video Low-bandwidth .
. 3 technologies such as
making video CDs standard used for the 1
. . AR and VR 1l
possible internet

1000x size compression and overhead reduction!

Source: [1] https://medium.com/videocoin/the-history-of-video-codecs-infographic-432e5be1154f.
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> Hardware for Video Generation Models

[ Video Compression ] |
mportant

. » Video with
small size
DCT
(Discrete Cosine Unimportant
Transform)

Unimportant
Important (INTS)

Generated
1. Activation sparsification 2. Hybrid precision quantization  video
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Hardware for Video Generation Models

For linear-heavy video generation models, we propose FlightVGM, a HW-SW
co-design with temporal-spatial & floating-fixed strategies

@ Attention O Linear <« Similarity

| Spatial-temporal Frame
100% - 1 Onl
c Linear compression T Y
.g 80%( dominates: I — o all!
8 oo FlightVGM >
8 e \'s = ﬂ 1<<<’z’ 1 2 3 4Token
a. - -
0% Attention Fixed-point DSP-Expansion  Floating-point
E 0% dominates: computation (DSP-E) computation
O y ViDA (e.g., attention) o ®@ Vax|| & (e.g., linear)
2 4 8 16 32 64 DSP-E | < DSP-E
Frames*Tokens (Resolution)/Hidden dimension (INT8 mode) DSP (scalar) (FP16 mode)
>
> Linear dominated: resolution! or dim.? Sparse Computing + Configurable Design

— Higher Performance
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Hardware for Video Generation Models

Main To address the computational redundancy problem in VGMs, a
Method temporal-spatial joint sparse method is proposed

Utilize Inter/Intra-frame Similarity

EI Com;z:.mnon

Frame B Redundant comp
Tokc" Token Large redundant
1 2 _
r___. $ //.d computations!
ﬂ“ 2 8 (Over 50%)
1 \\ 1 2 3 4Token
<+ Similarity Frame

. = Spatial-temporal onl
w compression 2 @m.m 4DY
el T | b
g 1 2 3 4Token

]\\

Mining Similarities by Grouping

Step-1: Inter-frame sparsification

Similarity Table-1
F1|F2|F3
0.03]0.52|T.1

P | rer [0.98]0.62|T. 2

3

AAAA
AWN PR

F 2 frame|0.96|0.36|T. 3
F.1 0.63]0.99|T. 4

Step-2: Intra-frame sparsification

Similarity Table-2
T.0| Ref. token
T.1]0.99 0.79

: 3'> T.2 0.2255% »>
: D T.30.57/0.98

F.1 F.2 F.3
Addltlonal cost can be ignored

6TNd vs. TNd?), d=
(6TNd d?), d=1152

[1] Liu J, Zeng S, Ding L, et al. Flightvgm: Efficient video generation model inference with online sparsification and hybrid precision on fpgas[C]//Proceedings of the 2025 ACM/SIGDA International Symposium

on Field Programmable Gate Arrays. 2025: 2-13.
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> Hardware for Video Generation Models

Main A DSP58 extension architecture is proposed to enhance
Method utilization under mixed-precision computing
Floating and Fixed Hybrid Architecture Expanded Architecture based on DSP IP
Precision = - H A A
a3 \ Onl | : * {:
mh %@%H h:lfyoaf _.frac INTS B DSP58 P INTS B DSP58 P
ﬂ—'ﬁ:{}l‘w — mu [T _I o [T L6 _I
{FP16| (operator-2 ) 7(?) 11&5 i+ full perf. —1 I .
¥ ax ormalization
Model FPGA | M1 -.|N 1| A \‘_
_-e& EXP m INT J INT
Align ADD ADD X,y
Fixed-point DSP-Expansion  Floating-point FP16 mode INT8 mode boo Doy
computation (DSP-E) computation X'=AXBo+ Co ¥V = AXB1 + (4 [x.y] = lag, arlx [blo b11] T leocal
(e.g., linear) (e.g., attention)
DSP-E Qo ® @ daa O? DSP-E FP16 mode INT8 mode
(INT8 mode) ||| DSP (scalar) |[*7|(Fp16 mode) (2 floating-point MACs) (4 floating-point MACs)

[1] Liu J, Zeng S, Ding L, et al. Flightvgm: Efficient video generation model inference with online sparsification and hybrid precision on fpgas[C]//Proceedings of the 2025 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays. 2025: 2-13.
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Hardware for Video Generation Models

B Models and datasets

® Models: Latte-1 and Open-Sora 1 Table 1: Hardware parameters of GPU and FPGA platforms.

B Datasets:
B Metrics

m CLIPSIM: Text-Video Alignment
® VBench: Video quality

W Baseline

B Generic hardware: NVIDIA 3090 GPU

UCF-101

Platform NVIDIA AMD AMD
3090 GPU U280 FPGA V80 FPGA
Compute units 328 9024 10848
Tensor Cores DSP48s DSP58s
Frequency (MHz) 1695 225 300
FP16 PCP (TOPS) 142 5.4 6.5
Memory (GB) 24 8 & 32 32 & 32
BW (GB/s) 936 38 & 460 51 & 819

B FPGA-based accelerator for Transformer: HiSpMV[FPGA’24] and

FlightLLM[FPGA’24]

B ASIC-based accelerator for DiT: InterArch[DAC’24] and CMC[ASPLOS’24]
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Hardware for Video Generation Models

With 21x lower peak compute than the NVIDIA 3090, FlightVGM achieves
1.3% higher speedup and 4.5x better energy efficiency

4 Throughput (TOPS)
End-to-end m 4 Normalized speedup**
1.30x l 1% Transformer- | DiT-based 1
| based FPGA |  ASIC | ;
—— 2.75x Accelerators | Accelerators | ) “ T
-I Tech.3 Average 2.84x 4.92)(; I Video generated by original model
2.46x: M :
> 7.69x
Gap>21x B L 3.26x 1.00x 14.42x :
} Tech.2 : ‘Q ! !
49 2 AN L :
]_-"_9_?_ T T;zch_lx HiSpMV FlightLLM InterArch CMC Ours
[FPGA’24] [FPGA’24] [DAC’24] [ASPLOS"24)

3090 V80- FlightVvGM

GPU native* (V80 FPGA)

Video generated by efficient model
[1] Liu J, Zeng S, Ding L, et al. Flightvgm: Efficient video generation model inference with online sparsification and hybrid precision on fpgas[C]//Proceedings of the 2025 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays. 2025: 2-13.
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> Menu of Techniques

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

I
I
Input Compression I
I
I

I

| Algorithm-
| level
I

Efficient Output Decoding
» Speculative Decoding
+ Jacobi Decoding
* Agentic Generation

prompt compression, RAG

Alternative Generative
Paradigms

Input Compression
* Input Compression

Alternative Generative Paradigms
Diffusion for Text
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>

Menu of Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

Input Compression
prompt compression, RAG

Alternative Generative
Paradigms

Efficient Output Decoding
Speculative Decoding

Input Compression

Alternative Generative Paradigms
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Speculative Decoding: Concepts

. Recall: autoregressive decoding of LLMs

- Decoding stage: memory bound (data transfer of model weights & KV cache)

- Redundant computation is left unused!

Decoding stage

T1 | T2 | T3
[ [

' N

Auto-regressive decoding

[/ /)

/

User Prompt

1| T2 ]| T3
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> Speculative Decoding: Concepts

. Core idea of speculative decoding

- Use a small draft model to generate multiple token for verification

- The LLM conducts parallel verification (memory bound allows more computation)
- Key elements: 1) the acceptance rate of generated tokens; 2) the cost of draft model

T1 (T2 (T3 | T4
[ [ T/
Auto-regressive decoding
T )
______ [ [ ]

| Context [T1|T2|T3

| Context | T1| T2 | T3 | T4
| miliy |
: Parallel verification
LLM i J
| |
_______ | > |
| Context | T1| T2 | T3 | T4

[1] Leviathan, Yaniv, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. ICML 2023.
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Speculative Decoding: Demo

« Demo from [1]
- Green: accepted tokens
- Red: rejected tokens

- Blue: corrected tokens

[START] japan L s benchmark !::g n

[START] japan ; s benchmark 255553 23 IE

[START] japan N s benchmark nikkei 255 index rose
[START] japan N s benchmark nikkei 335 index rose
[START] japan ' s benchmark nikkei 225 index rose
[START] japan N s benchmark nikkei 232 index rose
[START] japan ‘s benchmark nikkei 335 index rose
[START] japan ' s benchmark nikkei 225 index rose
[START] japan N s benchmark nikkei 335 index rose

2
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o
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[1] Leviathan, Yaniv, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. ICML 2023.
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» Speculative Decoding: Speed-up Estimation

. The speed-up rate of speculative decoding (SD) can be estimated!

- S: the total number of tokens
- R: the number of SD rounds
- v: the number of generated tokens in each SD round

Speedup — AR _ S-Tr(B.1) S 1
Haias 7’11;1)7 N \ T \ LT \ ﬁ . |ro(Ba) Tr(BA)| | Treject
o R- (n' : ll)(B 1) + II(BA') ar Ir-r:_jurl) /- Tr(B.1) + Tr(B.1) s Tr(B.1)

@ @ ®

% The relative latency of draft model to the target model

% The cost of multi-token verification. A large batch size B is harmful to speed-up rate

ﬁ The negligible cost of token sampling for the rejected tokens

® ® 0O ’

[1] Sadhukhan, Ranajoy, et al. Magicdec: Breaking the latency-throughput tradeoff for long context generation with speculative decoding. ICLR 2025.

[2] Huang, Zongle, et al. MOESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE. arXiv preprint arXiv:2505.19645 (2025).
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Speculative Decoding: Representative Works

. How to find an good draft model?
- consistent with the target model
- efficient in decoding

23-9: Medusa [1] 24-1: Eagle [2] 24-10: LayerSkip [3]
A A A

24-12:

DeepSeek-V3 [4]
A

v

m [y ova— - il S B

[ oo ™ o o - e
— L —— = S - 09 - - 0089
o e — = ; - 998 | - - 6699
- o St ] o o : b (i - 8088 - Q0P| (= SOCP
¥ e T_: re - 5990 . ::', N ;\-z'.

.

o———

[Draft model] Independently  [Draft model] A single transformer [Draft model] The first a few

trained multi-layer decoders  layer taking the output from LLM

layers of the LLM itself

[1] Tianle Cai, et. al. Medusa: Simple lim inference acceleration framework with multiple decoding heads. ICML 2024.
[2] Yuhui Li, et. al, EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty, ICML 2024

[3] Mostafa Elhoushi, et. al. LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding, arXiv preprint, 2024
[4] Deepseek Team. DeepSeek-V3 Technical Report.

[Draft model] Independent multi-layer

perception pre-trained together with DS-V3
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> Speculative Decoding: Eagle

“make/ | [ H w-m/ L[ e | o ] Drat model: a single transformer layer
,,,,,,, hel : r r feel
Can ) ) —— | = Lo - # params: 0.25B ~ 1B
T“'“"M} - : S?'"P"'T‘%"'“'"P'e{""es ; : ) - #training data: 1B tokens
: : s _ . 0
: — l Acceptance rate: 75%
t t ‘ t ¢t * N I
Foow e | Uil el (el o] (o] Tree attention: more tokens per pass
] ‘ I : I I ‘ T T - Verify more tokens per pass o
SR | | Gine Ay regresion Hes) ) - E.g., 12tokens (4 paths)  ¢%0 0%
‘ " foow foun E r H_ o (= - EAGLE s Speculative sampling DistillSpec Vanilla
e e : e e " e e. 2.68x 267x
how can can 1 P Cmake help | Ewith ] [Syou ] e 2.32x 2.40x 2.92x o
f 1 s t - ¢ SRR ¢ g2
% Embedding : ( ? I 3 Etmbeddir\gI : I I ) E KX 0 \v 6° q&do RX Q RX 00
‘ . i : - @1
G Jrweens s (Can) (1) § (make ) (Chelp ) : (Cwith ) (“you
4 . PO —— , —— \%)
( Forward 1 | Forward 2 | Forward3 | \J\C"“ qcﬂ“ q\c\l“ LM \1\’3 “\\3 C“a‘10
B a
target LLM Draft model ;odels =

[1] Yuhui Li, et. al, EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty, ICML 2024
[2] Yuhui Li, et, al, Eagle-2: Faster inference of language models with dynamic draft trees. EMNLP 2024
[3] Yuhui Li, et. al, EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test, arXiv preprint 2503.01840.
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» Speculative Decoding: Multi-Token Prediction

. Multi-Token Prediction (MTP): trained from scratch with the LLM backbone

Target Tokens  t; ty

| |

ty ts

l

[ Cross-Entropy Loss

{Main Model |

I (Next Token Prediction)
1

—————————

' ( Output Head )

l
}“ Lyatn

ts ty ts te

|

|
[ Cross-Entropy Loss }-‘ Liere

I

: MTP Module 1
1 (Next® Token Prediction)
1

[ Output Head
1

1

I

[ Linear Projection

|

I

|

|
IR
|

-
Transformer Block :
|

)

]

] |
|

|

concatenation

(RMSsNorm | [ RMsNorm |
¥ ¥ I

[ Embedding Layer ]E

ty ts teg ty

l

l
[ Cross-Entropy Loss }-' Lire

ek T

| MTP Module 2
I (Next® Token Prediction)

| Output Head )

[ Transformer Block ]

[ Linear Projection ]

concaotenation

[ RMSNorm | [ RMSNorm |

- - ef - ---

Embedding Layer |

I !

[1] Deepseek Team. DeepSeek-V3 Technical Report.
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» Speculative Decoding for MoE Architectures

« SD is hard to tackle MoE:

« MoE does not favor small batch: Additional memory costs to load experts

« SD does not favor large batch: SD is beneficial for memory-bound systems
« SD + MoE is helpful under medium batch size
o The number of activated experts saturates, but does not reach compute-bound

GPU A, humaneval, temp=0, y=4

—— GPU results

Target Efficiency

0 20 40 60 80 100
Batch size B

0.85

0.80

0.75

0.70

Efficiency

0.65

t

o

w

w
Targe

0.50

0.45

GPU B, humaneval, temp=0, y=4

'\ ¢ —— GPU results

Target Efficiency

20 40 60 80 100
Batch size B

0.8

0.7

o
o

Target Efficiency

o
wv

0.4

Target Efficiency
i o = o o
& (. ~ -] °

©
w

humaneval, temp=0, y=4

o
o

”!‘ -=: MoE
== dense
x
/( LY ,'\\
[ ]
h v
] B
\
‘ X Soe-
] \ S
» X S
\ S
\ S
X S~
X
X X
\ el "
0 20 40 60 80 100
Batch size B

[1]1 Huang, Zongle, et al. MOESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE. NeurlPS 2025 spotlight.
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Menu of Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

Input Compression
prompt compression, RAG

Alternative Generative
Paradigms

Efficient Output Decoding

Jacobi Decoding

Input Compression

Alternative Generative Paradigms
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Jacobian Decoding

Drawbacks of speculative decoding

« Low acceptance rate, decoding time etc.
« A draft model needs to be separately trained and paired with the target LLM

[ ] Prefill Tokens

[ ] Guess Tokens

[ ] Accepted Tokens

Alan

Turing

who

the

he

just

great

[1] https:/i

Jacobian decoding:
A single LLM without
the draft model

Total Steps: 0
Total Accepted Tokens: 0
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> Lookahead Decoding

“Lookahead”: reuse the promising draft from past N-gram trajectories

[ |Prefill Tokens [ | GuessTokens [ ]Accepted Tokens g 2-Grams

Alan Turing who is the he just great

Total Steps: 0
Total Accepted Tokens: O

2-Gram Pool

[1] https://Imsys.org/blog/2023-11-21-lookahead-decoding/
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> Lookahead Decoding

REE

Lookahead branch
maintains a fixed-sized, 2D
window to generate n-grams
from the Jacobi iteration
trajectory.

Verification Verification branch selects
Branch and verifies promising n-gram
candidates.

0]
i
B
13
4
[0
2
3
4
=
2
3
4
5)
6

[1] https://imsys.org/blog/2023-11-21-lookahead-decoding/
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Menu of Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

Input Compression
prompt compression, RAG

Alternative Generative
Paradigms

Efficient Output Decoding

Agentic Generation

Input Compression

Alternative Generative Paradigms
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Skeleton-of-Thought (SoT)

SoT: LLM generates the skeleton autoregressively, and then each points in parallel
(an attempt in agentic generation for efficiency)

Norm.al Question Skeleton-of—]’hought
Decoding Decoding
(1) Skeleton
stage
Answer
(2) Point- /
expanding
stage
Vv
Generates answers Generates answers
sequentially =¥ Slower in parallel =¥ Faster

[1] Ning, Xuefei*, Zinan Lin*, et. al.,”

- Skeleton Stage: Guide the LLM to output a
concise skeleton of the answer

- Point-expanding Stage: Guide the LLM to
expand on each point from the skeleton in
parallel

- Achieve up to 2.39x end-to-end speed-up

positive

—> — > Answer
Qll(‘\(i()ll—)w

— —> Answer
negative

SoT in practice: A router to classify queries (SoT-R)

Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation." ICLR 2024.
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Menu of Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

Input Compression
prompt compression, RAG

Alternative Generative
Paradigms

Efficient Output Decoding

Input Compression
Input Compression

Alternative Generative Paradigms
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>

Prompt Compression

« Prompt compression: eliminate redundant tokens in the prompt

Selective Context: filter out redundant tokens to shorten the input prompt

Original: INTRODUCTION Continual Learning ( €L 4 ; -also known -as LifelongLearning ; s
a promising learning paradigm to design models that have to Jearn how o -perform -mudtiple-tasks
across-different-environments over-their-lifetime-{ To uniform the language and enhance-the-readabifity
of -the paper-we adopt the unique term continual learning f €L 4§ Ideal CL. models in the-real-world
should be deal +wish domain shifts ; researchers -fave recently started +o sample tasks from
two different datasets : For instance ; proposed to train and evaluate -a-model on Imagenet first -and
+hen challenge -its performanee -on the Places365 -dataset - considers more scenarios ; starting -with
Imagenet or Places365 ; -and -then -moving -on to the VOC/CUB/Scenes datasets . Few works propose

more advanced scenarios built-en top-of more than two datasets:

Filtered: INTRODUCTION Continual Learning ( a promising learning paradigm to design models
have to how across overTo uniform the language and enhance adopt the unique term continual learning
Ideal CL models in should deal domain shifts researchers recently started sample tasks
two different datasets For instance proposed to train and evaluate on Imagenet first challenge
Places365 considers more scenarios starting Imagenet or Places365 the VOC/CUB/Scenes datasets Few
works propose more advanced scenarios built top more than two datasets

1. Identify the token importance
I(x) = —logy P(x¢|xo, 1,y ooy Tp—1)
2. Group tokens to units
I(u) = Z I(x;)
1=t
3. Sort units in the descending order

I, = np.percentile([I(up),.., I(ux)],p)

4. Keep units above the threshold
C'=U; | I(U;)) > I,,1<i<n

[11Li Y, Dong B, Guerin F, et al. Compressing Context to Enhance Inference Efficiency of Large Language Models. EMNLP, 2023.
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LLMLingua

Compress the prompt with an small language model, with an reduction rate up to 20x.

4

Original Prompt

Instruction: Follow the ghen examples
and arswer the question.
Demonstration 1: Q: In a certan
school 273 of the mule studensts ke 1o
phy basketball, ... What percent of the
popubition of the school do not e 1o
phy basketball if the ratio of the mak to
fermle students & 32 and there are
1000 students? Lefs thnk step by step
The students are davided mlo 3 +2 =5
Each part represents 100075 = 200
students. So, there are 3 x 200 = 600
makes. And there are 2 x 200 = 400.
...basketball & 520/1000 * 100 ~ 52.
The amswer & 52,

Demonstration 2:

Demonstration 8: Q: Sam bought a
dozen boxes, cach with 30 haghlighter
pens mside,... The answer & 115,
Question: Janet's ducks by 16 eggs per
day..... How much m dollars does she
make every day at the faimers’ market?

2366 tokens

. J

”~

LLMLingua

| Budget
Controller

0 Distribution
Alignment

Il Iterative Token-

Level Prompt
Compression

Black-box LLMs

/

& A
1

/=

Prompt Execution

|

Compressed Prompt

: Sam bought a dozen boxes cach 30
highl pens mside, S10 cach ... thekers
separatcly a1 the of three $2. much make
total'nlets think stcp'sbought boxes x0)
ofkers'nHe 2 3ters minSam then boxes
Gkersbox Oters'aHe sokd these boxes
SnAflerelling these boxes there

> | 36030%ers'nesc00 of three'msold groups2

cach so mude *2 $20 fomialn total,
he015'aSince his he S -S120=S115 n
profi'aThe amswer & 115

@ '

9 117 tokens )

0. Distribution alignment
Instruction tuning of small LLM

1. Budget controller
Calculate the token-wise perplexity and
sort in the descending order

2. Iterative prompt compression
Group tokens into segments to ensure
their dependency, and compute
segment-wise perplexities

[1] Huigiang Jiang, et al. RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation. EMNLP, 2023.
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> LLMLingua-2

A better way to construct training data for the compressor: instructed by GPT-4

Compressed Text: Item 15, City Manager Recommendation adopt three resolutions. Response
Join Victory Pace program. Join California first program. Consent inclusion

properties jurisdiction California Hero program. Emotion, motion, second, public

comment. Cast vote. Public comment? Come forward. Alex Mitchell, represent Hero LLM

program. Hero program in California three half years

Compressed Prompt

4
oo Step 1: — » g ¥ “ Step 5:
=82 i o - . // Step 2: - P2 :
™ Data Distillation = 2 Data Annotation £ Prompt Compression
- @& based on Ppreserve

Ppreserve Pdiscard
rOriginal Text: Item 15, report from City Manager Recommendation to adopt three
resolutions. First, to join the Victory Pace program. Second, to join the
California first program. And number three, consenting to to inclusion of
certain properties within the jurisdiction in the California Hero program. It
was emotion, motion, a second and public comment. CNN. Please cast your vote.
Oh. Was your public comment? Yeah. Please come forward. I thank you, Mr. Mayor. g
Thank you. Members of the council. My name is Alex Mitchell. I represent the I . | Stee 4 Token Classifier as Compressor
hero program. Just wanted to let you know that the hero program. Has been in Train Compressor

.1 Quality Control
221 & Filtering

kCalifor‘nia for the last three and a half years. 1) Original Prompt

[1] Pan Z, Wu Q, Jiang H, et al. Limlingua-2: Data distillation for efficient and faithful task-agnostic prompt compression[J]. arXiv preprint arXiv:2403.12968, 2024.
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> AutoCompressor

The LLM learns to summarize history context given the instruction <summary_token>

use for language modeling summary vectors

000000000000000000 & Illl
DD:I:l:l:lli

LM |

EEEEEZ7

LM )

OO00OSN
ectors — The LLM will generate summarized history
N || || || ﬂ.[“{‘k‘;;‘\‘ y —» <summary_token>: A new token to tell the
N LLM to summarize the context

[_“ " I I IHI—"—"—"—"—IHI_"_"_"_"_"_I l\:[);li:i]:]lllzai input

[1] Chevalier A, Wettig A, Ajith A, et al. Adapting Language Models to Compress Contexts. EMNLP, 2023.
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>

RECOMP

« Prompt compression for RAG systems

» Otherwise, the retrieved documents can be extremely long

RECOMP during inference

.....................................................
...............
>

Input query x b -=-»2010 X
Retrieved documents D RALM (749 tokens)
snenfoidichevilll SN Blackbox = . .. g
" LMM
stop making the moved from Smyma, Tennessee, &
nissan xterra? to Nissan's facility in Canton, ; O S EEeT o £
Mississippl. Early US models The Nissan Xterra is a 2015
include X, S and PRO-4X, witha ~ ----+ Compressor “-*front-engine, 2-wheel or 4- RECOMP
choice of 6-speed manual... wheel drive, five-door ... (58 tokens)
A . Summ
Retrieve Compress e Prepend

Ultra-long context!

Abstractive Compressor: summarize text from the documents
Extractive Compressor: extract text from the documents
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> Context Folding for Agentic Al

« Context Folding: prompt compression for Agentic Al

« Deep research, coding agent, etc.

v Task $0.0000

| want to test qwen2.5-coder-instruct 78 on swe-bench-
verified. Please write me the code to complete

Tokens: + 8604k 4 17.0k
Cache: & 262.1k

51.6k

ENENEEE B B B B EN

Key idea: A LLM to summarize the history
whenever the context reaches some threshold

(2] wm o—@ How It Works

1. The agent's context grows in size
until it hits a thres!

2. Early events are combined and

o summarized to keep relevant info.

3. A shorter context is built.

[1] https://openhands.dev/blog/openhands-context-condensensation-for-more-efficient-ai-agents
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> Context Folding for Agentic Al

« Context Folding: prompt compression for Agentic Al

Question
| @ Rollout with 7 |
| e = 1. Learn to create, solve and
(" Observation ) Sub Task-1 ——1 ;f 25 ;ﬂ summarize sub-tasks
((Beneh)——( Observation ) -@-/ ,p og, Q‘*
(Adion ) Co 0,1 g8 Q%9 2. Reduce the output context
_Opsenanon) el |19 219 ® Se from sub-task result
o iey Q O B
{_ Observation ,-'— wa( 1q) L rlé = P ‘rco
( Obeervetion ) Sub Task-2 o @ Roward Calculation I 3. SFT/RL training to enable
(Branch )+ Obsenvation ) i | oucone G @D ... @B the ability to fold context
(Action ) S (e * Y=
fr———— * Reward Ql QZ wer QG ‘ .
e _Qpservation ) $ 4 4. Context reduction 10x
(_Observation J——_  Retun ) 3 © Group Normalization | )
o —C) = without accuracy drop on
e R e SWE & BrowseComp

(a) Context Folding (b) FoldGRPO

[1] Weiwei Sun, et al. Scaling Long-Horizon LLM Agent via Context-Folding. arXiv,2510.11967.
Page 192



>

Menu of Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

Input Compression
prompt compression, RAG

Alternative Generative
Paradigms

Efficient Output Decoding

Input Compression

Alternative Generative Paradigms
Diffusion for Text
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> Diffusion Language Models

@ Any other solutions? —— Don’t use the autoregressive model?
—— To fully parallelized input & output, diffusion language models

Write a story that ends with "Finally, Joey and Rachel get
Sentence-level t married."

‘Drcam<mask>H a :\|\<mask>)[<mask>][ modcl]

Token-level t

Janet's ducks lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends every day with
four. She sells the remainder at the farmers' market daily for $2
per fresh duck egg. How much in dollars does she make every day at
the farmers' market?

Finally, Joey and Rachel get married.

Completion Infiliing

[1] Jiacheng Ye, et al. Dream 7B: Diffusion Large Language Models. arXiv preprint, 2508.15487.
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> Diffusion Language Models

. Autoregressive modeling v.s. Diffusion modeling

max E g () 108 Do () < moin KL (pgaa()||po(x))

~ v

N,
Generative modeling principles

' 1 Al ‘ 1: 1 5 v
Pe(x) = pe(z’) 1_[2'1’9("3 | =7"77), po(x) = Y p(xr) [[re(xi1lx).
Ll:‘ 4 X1.7~q t=1

—

progressive left-context prediction progressive full-context prediction

[ is ][ a ][ text ][diﬁ'usion][model][ : ] E . [text ][diﬁ'usion}[:, I¢ ][ . ]
I I I I [ I ! I | I

[ Transformer Decoder with Causal Attention ] [ Transformer Decoder with Full Attention ] remasking

O Y O A O O OO CI A N SR

(Do) (s ) (o) (et ) (6sion) (ot ) (Do) (cnse ) (o) (o) (s ) (nde

(a) Autoregressive Modeling (b) Diffusion Modeling in Dream

[1] Jiacheng Ye, et al. Dream 7B: Diffusion Large Language Models. arXiv preprint, 2508.15487.
[2] Shen Nie, et al. Large Language Diffusion Models. NeurlPS 2025.
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Diffusion Language Models

Instances per second

Inference latency of diffusion models

== Quality (Accuracy) == Speed (Instance per second)

60.0 200
50 20
18.0
40 0.0 16.0
15 5 oo 14.0
30 E 12.0
<
10 2 0 10.0
20 b 8.0
3 200 6.0
5 o
10 10.0 e
20
0 < 0 0.0 0.0
5 10 15 20 25 30 1 2 4 5 6 8 16 2
Diffusion Timesteps Sampling Steps
| | | |
| | L i Speed Factor (xN) ==@=Acc
Speed >> AR Speed > AR Speed <AR
Quality <AR Quality > AR Quality >> AR
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‘ Contents

Problem Definition &
Conceptual Analysis

‘ a Practical Pipeline

(5

©Q ©

Model-Level
Optimization

System-Level
Optimization

Algo-Level
Optimization

Conclusion

Page 197



> Tutorial Review

« Motivation: Scaling up model / data / computation based on Transformer is the
mainstream and effective pathway for stronger generative Al till now. The
scaling up of the model size and input & output cause efficiency issues.

« Preliminary:

e Most LLMs use autoregressive model as the generative modeling method, the
transformer architecture, in which the attention operation is a core mechanism.

« We introduce basic concepts of software, hardware system, device, chip,
microarchitecture, and the interface between software & hardware — instruction.

o Al inference is seen as forwarding data on a computational graph, where each node
represents a single operator, edge represents dependency. Operators are translated
to instructions. Hardware execute instructions.
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> Tutorial Review

. Problem Definition: Usually, latency, memory, energy consumption and
throughput will be the ultimate objective or constraint on “efficiency”. In the

meantime, the intelligence level of Al needs to be retained.
o« Measured metrics are actually tested on platform (thus is platform-related), and
directly correspond to the objectives / constraints.
« Proxy metrics are estimated with only model specification. In practice, they are
useful in diagnosis of the bottleneck and estimation of measured metrics.

. Practical Pipeline: We can estimate bottleneck modules and overall objectives,
whether each module is compute or memory bound using some simple method
(e.g., roofline model), then we can actually profile them (NVIDIA GPU: Nsight
system & compute). Finally, we design method accordingly.

Page 199



Tutorial Review

Optimization Ideas

r— " 1

Idea 1: Parallelize the sequential
sampling of existing model?

-I—_

Algori-
I thm Idea 2: Compress the input
modify the context to shorter one?
I algorithm Idea 3: Don’t use autoregressive
model?
[ S
I Idea 1: Remove redundant
I params/acts/computation?
Static (model compression) or
| Model dynamic (dynamic inference)
modify the
| model Idea 2: Design novel
lightweight structure (e.g.,
I efficient FFN & attention)
| Focus 1: compiler/runtime
lib/hardware for efficient NN
I System execution
modify the
software Focus 2: request scheduling /

resource management for
service-level objectives

Techniques

—q

Efficient Output Decoding
parallel generation, verification, or
refinement strategies

—q

Input Compression
prompt compression, RAG

— —

Alternative Generative
Paradigms

g

Model Compression
reduce model redundancy in a
static manner

Dynamic Inference
reduce model redundancy in a
dynamic manner

Structure Design
design novel structure, which often
require training

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.

Optimization Space

There is no representation/space or
optimization formalization general

to many work. The design of these
methods directly change a core application
or algorithm property to improve efficiency.

* Model Structure (e.g., #layer, #channel)
» Value Representation (e.g., low-bit

representation)

« Computational Graph (e.g., fusion)
* Kernel Implementation
* Request scheduling, resource

management, model placement

* Framework Implementation
* Hardware Implementation
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> Future Directions

. Application Requirements
» Long context (e.g., for complex reasoning)
o Multi-modality input/output
« Multi-model agentic application

« Recent Active Directions

o Algorithm-level
« Agentic generation (multi-agent collaboration)
« Agent context engineering

o Model-level
« Latent reasoning
» Efficient architecture design

o System-level
« Agent infrastructure
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Future Directions

Higher precision

Higher compression rate: lower bits
Hardware-friendly algorithms

: : Data-mixture of QAT
Compression of reasoning models Q

Training objectives v.s. LLM origins
RL with quantization

New format: MXFP4 or NVFP4?
The off-policy effect by

quantization

Efficient agentic LLMs Efficient context engineering

Page 202



Thank You !

Xuefei Ning', Guohao Dai?4, Haoli Bai3, Lu Hou?3, Yu Wang', Qun Liu3

Tsinghua University 2Shanghai Jiao Tong University 3Huawei 4Infinigence-Al

Tutorial Website
https://haolibai.github.io/emnlp-2025-tutorial-efficiency/
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