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Background
Towards general and generative intelligence, scaling up model / data / 

computation based on Transformer is a mainstream and effective pathway.

Focus Shift 1: Discriminative => Generative

Focus Shift 2: Specialized => General

WorldAIHuman

Based on the Transformer 
architecture, scaling model size , 
training data / computation, and 

test computation.

Current mainstream path

Data / Model size / Computation

Model
Performance
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Background
The model scale and input/output length in generative intelligence 

research and applications have increased significantly.

[4] Achiam, Josh, et al. "Gpt-4 technical report." arXiv 2023.
[5] Reid, Machel, et al. "Gemini 1.5: Unlocking multimodal 
understanding across millions of tokens of context." arXiv 2024.

Release Time
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2018-2024
3 orders of 

magnitude increase in the 
supported input length

1e2

1e13

1e8

2018 - 2025
5 orders of magnitude increase 
in parameter size [1]
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2018

2025

Example: 
DeepSeek-R1 [2] (year 2025): 671B params, open source.

[1] Villalobos et al. “Machine Learning Model Sizes and the Parameter Gap.” arXiv 2022.
[2] Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.arXiv 2025.
[3] Esser, Patrick et al., Scaling rectified flow transformers for high-resolution image synthesis, ICML 2024.
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Background
Application demands e.g., multimodal input, advanced tasks, may 
continually drive increases in model scale and input/output length.

Multimodal Input

Supporting high-resolution images and longer videos 
requires extended input/output contexts.

Modeling multimodal data may push the scaling 
saturation point of model size higher.

texts

~100B ~1000B ?

texts, images, videos, audios, …

Test-time compute scaling (especially CoT) for 
reasoning require longer input/output contexts.

Advanced Tasks
Agentic pipelines for broad applications require 

stronger models and longer input/output contexts.

Planning

Action

Memory

Single-
Agent

Multi-Agent Collaboration
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Application	Challenge
This scaling of the model size and input/output poses challenges for 

efficient inference across platforms and application scenarios.

WorldAIHuman

Requirements or constraints of application scenarios and platforms
Cloud Edge

Deployment

Model size, input/output length Inference cost (time, storage, energy)

High
Throughput

Low
Latency

Small
Storage

Low Energy 
Consumption
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Application	Challenge
Time to first token (TTFT) and time per output token (TPOT) w.r.t. model size 

and input/output lengths, estimated with three costs (compute, memory 
access and memory footprint) of the model spec and device spec.

37465.4x,
596PFLOPS

533.5x,
15.6TB

26.2x,
401GB1
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N
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k 
In
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t

Input Token Length

Different #Prefill Tokens using Llama-3.1-8B (BS=1)

Compute(GFLOPS) MemoryAccess(GB) MemoryNeed(GB)

281.7x, 
3.5PFLOPS

84.4x,
769GB

196.7x,
1.6TB

1

10

100

1000

Llama-3.2
-1B

Llama-3.2
-3B

Llama-3.1
-8B

Llama-3.1
-70B

Llama-3.1
-405BN

or
m

al
ize

d 
to

 1
B 

M
od

el

Different Models with 4k Input Tokens (BS=1)

Compute(GFLOPS) MemoryAccess(GB) MemoryNeed(GB)

4K Tokens Compute
Amount

Memory
Access

VRAM
Consume GPU TTFT* TPOT*

1B Model 12.4 TFLOPs 19.2 GB 15.3 GB 1xA100 57~132 ms 1.8~4.3 ms

405B Model 3.5 PFLOPs 1.6 TB 769 GB 10xA100 1.6~3.7 s 55~128 ms

8B Model Compute
Amount

Memory
Access

VRAM
Consume GPU TTFT* TPOT*

1K token 15.9 TFLOPs 29.2 GB 15.3 GB 1xA100 73~170 ms 10~24 ms

1M token 597 PFLOPs 15.6 TB 401 GB 6xA100 7.6~17.7 min 32~75 ms

*TTFT is estimated using Compute Amount / (Peak OPS x compute-util), as prefill is computation-bounded. We assume a compute utilization range 30%~70% to report the estimation.
TPOT is estimated using Memory Access / (Bandwidth x bandwidth-util), as decoding is memory-bounded. We assume a bandwidth utilization range 30%~70% to report the estimation.
A100 Peak Compute Performance (FP16) = 312 TFLOPS; Peak Bandwidth = 2 TB/s
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Application	Challenge
Per-request energy consumption w.r.t. model size and input/output lengths, 

estimated with actual latency measurement, device & schedule 
assumptions, and device spec.

[1] Jegham, Nidhal, et al. "How hungry is ai? benchmarking energy, water, and carbon footprint of llm inference." arXiv preprint arXiv:2505.09598 (2025).

Jegham et al. made an attempt to estimate the 
environmental footprint of LLM inference at per-

prompt level of commercial AI providers, based on 
assumptions on the infrastructure and scheduling.

Model

Compa
ny; 

Host 
(Device)

Date

Estimated energy 
consumption 
(100in-300out) 

(Wh)

Estimated energy 
consumption 

(10kin-1.5kout) 
(Wh)

GPT-4.1 
nano OpenAI;

Azure 
(H200&
H100)

Apr, 
2025

0.10±0.04 0.45±0.21

GPT-4.1 
mini 0.42±0.20 1.59±0.80

GPT-4.1 0.92±0.50 4.23±1.97

LLaMA-
3.1-8B

Meta; 
AWS 

(H200&
H100)

Jul, 
2024

0.10±0.02 0.60±0.09

LLaMA-
3.1-70B 1.10±0.13 11.63±1.39

LLaMA-
3.1-405B 1.99±0.32 20.76±1.80
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Application	Challenge

Overall energy consumption, estimated with reported usage, device & 
schedule assumptions, and device spec.

[1] Jegham, Nidhal, et al. "How hungry is ai? benchmarking energy, water, and carbon footprint of llm inference." arXiv preprint arXiv:2505.09598 (2025).

Jegham et al. made an attempt to estimate the 
environmental footprint of LLM inference at per-

prompt level of commercial AI providers, based on 
assumptions on the infrastructure and scheduling.

A rough estimation result: Assuming a total of 772 billion 

queries (estimated with OpenAI 2024 report and the 

usage growth pattern, assume 80% short queries) 

annually in 2025,  GPT-4o inference require 

approximately 𝟒×𝟏𝟎𝟏𝟏Wh, exceeding the total electricity 

consumption of 35,000 U.S. residential households.
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Model:	Architecture	of	LLMs
• Most LLMs are based on Transformer architecture[1], consisting of an
input embedding layer, Transformer blocks, and a decoding layer.
• A Transformer block consists of:

• Attention-Linear (transform for Q, K, V, O)
• Multi-Head Self-Attention
• Feed Forward Network (FFN)
• Layer Norm

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Attention 
layer

softmax
𝑸𝑲𝑻

𝒅𝒌
𝑽

where 𝑄,𝐾, 𝑉 ∈ 𝑅#×%

I Ġlove ĠEM N LP

LayerNorm

WQ WV

WO

Multi-head Self-Attention

WK

Q K V

+

Feed Forward
Network (FFN)

layer
FC1

FC2

Activation

+

LayerNorm

…
𝑁 tokens

Residual
Stream
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Attention	Layer

X A
WQ WvQ

K Attention Layer

V

Wk

X’

WO

Calculation of each attention head:
• 𝑄 = 𝑋𝑊"; 𝐾 = 𝑋𝑊#; 𝑉 = 𝑋𝑊$ to map 𝑋 ∈

ℝ%×' to 𝑄,𝐾, 𝑉 ∈ ℝ%×(

• Calculate inner product S = 𝑄𝐾), apply mask 
and softmax to get the attention matrix 𝐴 =
softmax(𝑆 + 𝑀) ∈ ℝ%×%

• 𝑋* = 𝐴𝑉 to get the output

The idea of attention module is to 
establish token-to-token 

“attention” relationships within 
a sequence.

This relationship is modeled 
by an attention matrix, 

where each row represents 
one token’s attention 

distribution to previous
tokens (sum up to 1).

Causal attention mask: 
Each token only has positive 
attention to previous tokens
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Generative	Modeling	Algo:	Autoregressive	Model
• Contemporary LLMs are generative models that uses the “autoregressive”

generative modeling method.

• The core task of generative modeling is to learn a parametrized model 𝑝!(𝒙)
from observed data 𝒙 "

"#$
%

, which in some sense capture the unknown real
distribution of data 𝑝&'('(𝒙) , and can do stochastic sampling (i.e., sample
generation) & probabilistic inference (e.g., likelihood estimation).

• Autoregressive models are a family of generative modeling methods that
models the joint probability of a token sequence 𝒙 = [𝑥$, 𝑥), … , 𝑥*] as a product of
conditional probability distributions, each conditioned on the preceding tokens:

𝑝 𝑥$, 𝑥), … , 𝑥* = 𝑝 𝑥$ +
"#)

*

𝑝(𝑋" = 𝑥"|𝑥$, … , 𝑥"+$)
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Sampling	Process	of	LLMs
LLMs are autoregressive models that uses one transformer to model the
conditional distributions.
• Denoting the vocabulary set as |𝑉|, the transformer maps the token sequence 𝑥!" ∈ 𝑉"#$ to

a sequence of logits 𝑙 ∈ ℝ("#$)×|)|, where the logits 𝑙 𝑖 − 1 ∈ ℝ|)| corresponding to 𝑥"#$ is
regarded as the categorical distribution’s parameter of 𝑥".

The KV cache design for sampling from causal LLMs:
• At first glance, in each step of autoregressive sampling: 𝑥" ∼ 𝑝*(𝑥!"), the model forward

process has 𝑂((𝑖 − 1)+) computation complexity. Thus the overall sampling process
(assume 𝑁 steps) has 𝑂(𝑁,) complexity.
• Most contemporary LLMs choose to use causal attention: The calculation of features of 𝑥"

only attends to 𝑥!". In this way, newly sampled tokens 𝑥-" don’t influence the features
corresponding to 𝑥".
• This enables us to “cache” already calculated features (specifically, the Key and Value) of

preceding tokens to avoid recalculating their features, thus reduce overall computation
complexity of sampling to 𝑂(𝑁+).
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Sampling	Process	of	LLMs
After applying the KV cache technique, a typical LLM inference/sampling*
process can be divided into two stages:
• Prefilling Stage: The LLM calculates and saves the KV cache of the initial

input tokens, and samples the first output token.
• Decoding Stage: The LLM samples the output tokens one by one with the KV

cache, and in the meantime updates the KV cache.

*In this tutorial, the terms “inference” and “sampling” will be used interchangeably. Although they differ in the context of probabilistic modeling, here they both refer to 
either a single sampling step—i.e., a forward pass of the model—or the overall sampling process, depending on context.
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Attention	Computation	in	Prefill/Decode	Stages
Prefill Decode

Who
won

?
A

WQ WvQ

Attention Layer

V

Wk
WOK

Who
won

?

WQ Wv

Attention Layer

V

Wk
WO

Jack Q A

K-Cache K

V

V-C
ache

The LLM calculates and saves the KV
cache of the initial input tokens, and
samples the first output token.
Calculate 𝑁 query, key, value; 
calculate 𝑁×𝑁-sized attention matrix A.

The LLM samples the output tokens
one by one with the KV cache, and in
the meantime updates the KV cache.
Calculate 1 query, key, value; read N 
key, value from KV cache; calculate 
1×(𝑁 + 1)-sized attention matrix A.

Jack

Won
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Software,	Hardware,	Instruction

Instruction Set Architecture (ISA)
Define the instruction interface of a device

Let’s first have an overview of the most basic terms of interest:

• What is a computing hardware? Hardware consists of 
microelectronic components that transfer and transform 
electrical signals. Through these physical operations, 
hardware realizes high-level abstractions, that is 
executing functionalities described by instructions, 
such as storing, transferring, and transforming data.

• What is software? All software -- no matter it is an OS, a 
game, or an AI model’s inference engine -- is a structured 
pack of instructions and data.

• Instructions are the interface between software and 
hardware. Instruction Set Architecture (ISA) defines this 
instruction interface: what instructions are available, how 
they are encoded and executed. 

[1] https://en.wikipedia.org/wiki/Instruction_set_architecture

Example 1: CPU ISA defines instruction format and meaning. [1]

Typical ISA for CPU includes MIPS, RISC-V, x86, x86-64 (amd64), etc.

Example 2: NVIDIA Ampere GPU architecture has compute 
capability sm80, which indicates its supported certain 

instructions (ISA) and some microarchitectural features
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A	Conceptual	Layered	Overview

Circuits
Logic circuits, memory cells constructed by transistors, interconnects, capacitors, …

Functional Modules
Arithmetic units, controller, cache, …

• A functional module combines circuits to perform 
certain functions

• Basic logic and memory elements

Microarchitecture
Define functional modules (controller, computation, 
memory) and how they “connect”: (1) control path: 

how the controller parse the instruction and distribute 
control information; (2) data path: how modules 

parse and pass data based on control information

Accelerator Chip

Physical Design / 
Implementation

Hardware System

Host Machine
(CPU & Memory & …) AI Chip Off-Chip Memory

Accelerator Device(s)

Software
OS / Driver

Orchestrate resources or provide 
low-level resource-access API

Runtime Lib
Interact with 

device at runtime

Toolchain
Compile instructions 
for host and device

• A microarchitecture design organizes modules to 
implement the accelerator’s ISA 

• A hardware system consists of host, accelerator 
devices, and their interconnects

• Toolchain produces hardware-specific instructions.
• Runtime library manages program execution, send 

instruction to device, transfer data to/from device, and 
optionally call toolchain dynamically.

Accelerator’s Instruction Set 
Architecture (ISA)

Define the instruction interface of
the AI accelerator device
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A	Composition	Overview
• A system primarily consists of the following components:

Host 
CPU

Off-chip
memory
DRAM

HBM, DDR,
LPDDR, …

Global control

Large-capacity 
storage

(Use HBM as an example)
Capacity: tens of GB
Bandwidth: ~TB/s

Data cache 
during 

computation

Capacity: tens of MB
Bandwidth: 10–
100 TB/s

Computation 
core

Computation 
flow control of 

AI chips

AI Chip
On-chip cache SRAM

Weight cache Input/Output cache

Processing unit

Matrix/Tenso
r processing 

unit

Vector/Scalar 
processing 

unit

Input 
register

O
utput 

register

ControllerInterconnection 
interfaceConnecting with other AI chips

PPT credit: Prof. Zhenhua Zhu@Tsinghua University

Bandwidth: The rate at which data can be 
transferred between two components of a system.

Capacity: The total amount of data 
that a memory component can hold.

PCIe Bandwidth: ~100GB/s
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Common	Hardware	Types
• Common hardware types: CPU, GPU, FPGA, ASIC

• Chip-level metrics/characteristics: peak compute performance (OPS), energy efficiency
(OPS/W), power (W), and area (mm²).

• Also need to consider: generality and suitableness to algorithms; comprehensiveness of the
software ecosystem.

General Specialized

CPU
Central Processing Unit

High generality
Low AI computing 

performance

GPU
Graphics Processing Unit

Strong parallel computing 
capability

High-bandwidth memory

FPGA
Field-Programmable Gate Array

Hardware programmability
Flexibility and 

reconfigurability

ASIC
Application Specific Accelerator

High specialization
High performance and low 

power consumption

More general and fine-grained ISA. Rely on 
software to implement coarse-grained 
operators, algorithms.

More specialized and coarse-grained 
ISA or even template-based design that 
hard code an algorithm.
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Chip-level	Evaluation	Metrics
• Chip-level metrics/characteristics

Chip-level evaluation metrics

Performance

Power Area
PPA

Computation per unit time 
(OPS)

Power (W) → Energy 
consumption level

Energy
Efficiency

Computation per 
unit of energy 

(OPS/W, OPs/J)
Area (mm2) → Tape-
out fabrication and 
packaging costs

PPT credit: Prof. Zhenhua Zhu@Tsinghua University
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From cloud center to tiny edge device

AI1.0	Accelerators	in	Different	Scenarios

Sensor, Wearable Device Mobile / IoT Device Smart City / Auto-driving Car Cloud Center

Webpage
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From	AI	1.0	to	AI	2.0:	Energy	Efficiency	Metric

Page 28

Hardware energy efficiency → Inference-system energy efficiency
TOPs/J → Tokens/J

Metric!Tokens/J

PIM/NDP, Towards, Tsinghua, 
L. Guo et al., 47 Tokens/J

ASIC, WaferLLM, 
University of Edinburgh, C. 

He, et al., 6.2 Tokens/J

FPGA, TerEffic, PKU/NUS, 
C. Li, et al., 6.3 Tokens/JGPU, AWQ, MIT, J. Lin, et. al., 

0.8 Tokens/J

WebPage

Paper



Basic	Knowledge	:	Development	of	Chips

2023
2006 2022

2006
NVIDIA：
Introduced 
CUDA

2009

ICML 2009
NVIDIA：First 
GPU-
accelerated 
machine 
learning paper

2014

2014 Institute 
Computing 
Technology, 
CAS：
Introduced 
DianNao
452GOPS，485mW
932 GOPS/W

2015

2015 Google：
Began deploying 
TPU v1

92TOPS (INT4)，40W
~2.5TOPS/W

2016

Stanford：
EIE sparse 
accelerator
600mW 1.5TOPS/W

THU：FPGA16
FPGA accelerator
187.8 GOPS

NVIDIA：P100
10.6 TFLOPS

2017

2017 Google：
Unified training 
and inference
TPU v2
45 TFLOPS，200W

NVIDIA：
V100 with
Tensor Core
125 TFLOPS

2018

HUAWEI:
Ascend 310
16 TOPS（INT8）
8 TFLOPS（FP16）

Cambricon：
MLU100
32 TOPS（INT8）
16 TFLOPs（FP16）

2019

2018-19 Google：
Large-scale 
training TPU v3
90 TFLOPS

NVIDIA:
Edge-side
Jetson Nano
472 GFLOPS，5-10W

2020

NVIDIA：
A100
FP16（Tensor Core）：
312 TFLOPS

Wafer-level
Chips
400,000 computing 
units

2021

2021 Google:
TPU v4
275 TOPS（BF16/INT8）

PIM chips
HBM-PIM
70% energy efficiency 
improvement
2× performance 
improvement

AMD：MI100
FP 32：95.7 TFLOPS

NVIDIA H100
FP32：60 TFLOPS
FP16（Tensor Core）：
1,000 TFLOPS

Wafer-level chip 
WSE-2
850,000 AI-optimized 
cores

2023 Google: TPU v5
393 TOPS（BF16/INT8）

AMD MI300

2024

NVIDIA
B200/B100
FP16（Tensor 
Core）：2250
TFLOPS

PPT credit: Zhenhua Zhu
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Hardware	System	&	GPU	Device
NVIDIA GPU
• GPU device:

• GPUs use a Single Instruction Multiple Threads (SIMT) architecture.
• Compared with CPUs, GPUs are better suited for programs featuring simple

control logic and large-scale parallel computation.
• Hardware system: A GPU is not an independent computing platform, but rather a

co-processor to the CPU.

[1] C. John, et al. ”Professional CUDA C Programming."
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GPU	Microarchitecture
• Design Concept of GPUs

• Single Instruction Multiple Threads (SIMT): A single instruction is executed in
parallel by multiple threads.

[1] E. Lindholm, et al. ”NVIDIA Tesla: A Unified Graphics and Computing Architecture.”, in IEEE Mirco, 2008.

SM (Streaming 
Multiprocessor)
serves as the 
basic hardware 
unit for parallel 
instructions.

GPU Architecture
SIMT
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GPU Software Stack
• NVIDIA GPU Software Stack

• CUDA (Compute Unified Device Architecture) is the NVIDIA’s GPU parallel
programming platform and programming model, featuring a rich software ecosystem.

• AI & LLM frameworks is built on them.

Compiler

nvcc

Analysis 
Tools

nsight

Debugger

cuda-gdb

Communication 
Library
NCCL,

NVSHMEM

Operator 
Library

CUDA Toolkit
Toolchain & Runtime Lib

LLM Training 
Framework

Megatron-LM

[1] M. Shoeybi, et al. ” Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.”, arXiv, 2019.

cuBLAS,
cuSPARSE

LLM Inference 
Framework

TensorRT-LLM

Base AI Framework

PyTorch, 
Tensorflow, 

Jax
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GPU Programming	Model
• NVIDIA GPU Software Stack

• CUDA allows writing GPU code in high-level languages such as C/C++, reducing
programming complexity.

GPU

SASS Assemble

PTX

CUDA C

Python (PyTorch)

AI algorithms

（pybind）

Processed by 
compilers

User 
interface
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GPU Programming	Model
• Programming Organization: How to Parallelize?

[1] C. John, et al. ”Professional CUDA C Programming."

Thread

SIMT: Single Instruction Multiple Threads

Thread
Minimal parallel 
unit

Block
A block contains multiple 
threads.

Grid
A grid contains multiple blocks, 
encompassing all threads of a 
single kernel.

Kernel<<<grid, block>>>

Number of 
blocks per grid

Number of 
threads per block

Why define the above hierarchical organization?
It corresponds to the GPU memory hierarchy!
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GPU Programming	Model
• GPU Memory Hierarchy

• Thread
• Each thread has its own

registers (RG).
• Register contents are not

shared between threads.
• Block

• All threads within a block
share Shared Memory. Can
cooperate & communicate
through it.

• Grid
• All blocks access data from

Global Memory (High
Bandwidth Memory, HBM).

RGRGRG

[1] C. John, et al. ”Professional CUDA C Programming."
Memory Hierarchy

SIMT: Single Instruction Multiple Threads
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GPU Programming	Model
• GPU Memory Hierarchy

• From the perspective of memory access efficiency: how threads are organized
significantly impacts kernel performance.

[1] C. John, et al. ”Professional CUDA C Programming."

Thread

Block

Grid

RG

Shared
Memory

Global
Memory

Bandwidth and capacity of each memory 
hierarchy (A100 40GB GPU)

（256KB/SM）

~19TB/s
（192KB/SM）

~1.6TB/s
（40GB/GPU）

RGRGRG

Memory Hierarchy
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Algorithm	Deployment	Process
• How AI algorithms are deployed on hardware for actual computation

• AI Inference can be seen as forwarding data on a computational graph, where each
node represents a single operator, edge represents dependency.

• During deployment, operators are translated into hardware instructions. In the runtime,
hardware executes instructions.

WQ WV

WO

Multi-head Self-Attention

WK

K Cache V Cache

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Transformer layer in LLMs

FC1

𝑌 = 𝑊)𝑋

Taking FC1 as an 
example

𝑋

Abstracted as a single GEMM
operator

𝑊

M

K

K

N

𝑌
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Algorithm	Deployment	Process

𝑋

Abstracted as a GEMM 
operator

𝑊

M

K

K

N

𝑌

Hardware Instructions (CUDA)
Include computation, memory, and 
control.

The hardware executes 
instructions to perform 

computations.
[1] Bastian Hagedorn, et al. “Graphene: An IR for Optimized Tensor Computations on GPUs.” ASPLOS 2023.

Key question: Given the hardware, how can we evaluate and 
improve the inference efficiency of an LLM?

• How AI algorithms are deployed on hardware for actual computation
• AI Inference can be seen as forwarding data on a computational graph, where each

node represents a single operator, edge represents dependency (software level).
• During deployment, operators are translated into hardware instructions. In the runtime,

hardware executes instructions.
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Review:	Application	Challenge
The scale of the model size and input/output pose challenges for efficient 

inference across platforms and application scenarios.

WorldAIHuman

Requirements or constraints of application scenarios and platforms
Cloud Edge

Deployment

Model size, input/output length Inference cost (time, storage, energy)

High
Throughput

Low
Latency

Small
Storage

Low Energy 
Consumption
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Review:	Application	Challenge
The scale of the model size and input/output pose challenges for efficient 

inference across platforms and application scenarios.

WorldAIHuman

Requirements or constraints of application scenarios and platforms
Cloud Edge

Deployment

Model size, input/output length Inference cost (time, storage, energy)

High
Throughput

Low
Latency

Small
Storage

Low Energy 
Consumption

To meet requirements or constraint of application scenarios and 
platforms, we need to optimize the resource consumption of AI inference.
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Problem	Definition:	Objectives	&	Constraints

Optimization objective or constraint: Usually, latency, memory, energy 
consumption or throughput will be the ultimate objective or constraint on 
“efficiency”. In the meantime, the intelligence level of AI needs to be retained.

Measured metrics
Measured by testing model on platform, platform-related

Directly correspond to objectives / constraints,
related to final user experience, resource consumption, etc.

LatencyThroughput

Energy

Memory 
footprint

Time

Memory

Energy

Time To First
Token (TTFT)

Time Per Output Token 
(TPOT)

Prefill Stage Decode Stage

1. KV Cache 
2.Intermediate 

Activation 
3. Other 

Overheads

Time

*Note this is only a conceptual illustration. In actual serving framework, the KV cache pool is usually pre-allocated. 

End-to-end/Request/Generation Latency

Model 
Params

Peak
memory
footprint
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Problem	Definition:	Objectives	&	Constraints

Measured metrics
Measured by testing model on platform, platform-related

Directly correspond to objectives / constraints,
related to final user experience, resource consumption, etc.

LatencyThroughput

Energy

Memory 
footprint

Time

Memory

Energy

Proxy metrics
Estimated with only model specification, platform-agnostic

Widely used as the objective in some academic work or early 
stage of model-level optimization.

In practice, they are also useful in diagnosis of the bottleneck 
and quick estimation of the measured metrics.

Compute Amount
• FLoating Point OPerations (FLOPs)
• Multiply–ACcumulate operations  (MACs)

Param Size

(Estimated) Memory 
Access Amount

(Estimated) 
Memory footprint

Optimization objective or constraint: Usually, latency, memory, energy 
consumption or throughput will be the ultimate objective or constraint on 
“efficiency”. In the meantime, the intelligence level of AI needs to be retained.
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How Proxy Metrics Relate with Measured Metrics
• We can use three important proxy metrics to analyze the efficiency

• Compute amount: the amount of operations
• Memory access amount: the amount of data that read or written between off-chip

DRAM and GPU chip
• Memory footprint: the occupied off-chip DRAM size to store parameters/KV

cache/activation

Then, let’s bring hardware 
specification into the picture.

Higher Compute Amount

Higher Memory
Access Amount

Higher Memory Footprint

Higher Latency

Lower Throughput

Higher Energy
Consumption

Higher (Actual)  
Memory Footprint
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How Proxy Metrics Relate with Measured Metrics

• Intuitively, ./01234 50/2637489 ./01234 74:;., 
=40/:> 5??4@@ 50/263

A86BCDB3E are two lower bounds of latency.

• But the compute units might not be fully utilized, the bandwidth might not be fully utilized:

• Review our previous estimation example:

The compute amount of prefilling 1K token with Llama-3.1-8B is 15.9 TFLOPs.

NVIDIA A100 80G’s FP16 peak compute performance is 312 TFLOPS.

𝐋𝐚𝐭𝐞𝐧𝐜𝐲 = 𝑪𝒐𝒎𝒑𝒖𝒕𝒆 𝑨𝒎𝒐𝒖𝒏𝒕
𝑷𝒆𝒂𝒌 𝑪𝒐𝒎𝒑𝒖𝒕𝒆 𝑷𝒆𝒓𝒇. × 𝐜𝐨𝐦𝐩𝐮𝐭𝐞_𝐮𝐭𝐢𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 =

PQ.R STUVWX
YPZ STUVW[× \]^_`ab_`acdcefac]g =

QP^X
\]^_`ab_`acdcefac]g

If we assume 30%~70% compute utilization, we can get 73ms~170ms.

Llama-3.1-8B
#Prefill tokens

Compute
Amount

Memory
Access

VRAM
Consume GPU TTFT*

1K token 15.9 TFLOPs 29.2 GB 15.3 GB 1xA100 73~170 ms

Compute_utilization = +,-./0/1 234567/ 8/9:.
8/<= 234567/ 8/9:. Bandwidth_utilization = +,-./0/1 ><?1@.17-

8/<= ><?1@.17-

Why do we use compute amount 
instead of memory access amount to 

estimate latency for the prefilling stage?
=> It’s because prefiling stage is 

usually more “computation-bounded”
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Performance Analysis Model: Roofline Model
• Proposed by David Patterson in 2009
• Purpose: Uses an algorithm’s compute and memory access characteristics (operational

intensity) along with the chip’s peak performance and memory bandwidth to roughly assess
computational bottlenecks and guide subsequent optimization directions.

Peak performance
The maximum 

performance when 
compute units are fully 

utilized.

Operational Intensity
Number of operations per byte of 

memory accessed

C
om

pute 
Perform

ance

#compute amount
#memory access amount
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• Proposed by David Patterson in 2009
• Purpose: Uses an algorithm’s compute and memory access characteristics (operational

intensity) along with the chip’s peak performance and memory bandwidth to roughly assess
computational bottlenecks and guide subsequent optimization directions.

When bandwidth is fully utilized, 
performance depends on memory bandwidth.
Slope: memory bandwidth (Bytes/s)

C
om

pute 
Perform

ance

Performance Analysis Model: Roofline Model

Operational Intensity
Number of operations per byte of 

memory accessed
Page 49



• Proposed by David Patterson in 2009
• Purpose: Uses an algorithm’s compute and memory access characteristics (operational

intensity) along with the chip’s peak performance and memory bandwidth to roughly assess
computational bottlenecks and guide subsequent optimization directions.

Peak performance
Memory Bound

Slope: memory bandwidth (Bytes/s)

Compute Bound

Compute–memory balance point

Performance Analysis Model: Roofline Model

C
om

pute 
Perform

ance

Operational Intensity
Number of operations per byte of 

memory accessed
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Performance	Analysis	Model:	Roofline	Model
• Take LLM as an example:

• Prefill stage: Compute bound; Decode stage: memory bound

Memory 
bound

Compute 
bound

Prefill Decode

𝑸/𝑲/𝑽/𝑶
𝒍𝒅
𝒍 + 𝒅

𝒅
𝒅 + 𝟏

𝑸𝑲𝑻 𝒍
𝒍

𝒍 + 𝟏

𝑨𝒕𝒕𝒆𝒏𝑽 𝒍
𝒍

𝒍 + 𝟏

𝑭𝑭𝑵
𝒍𝒅𝑭𝑭𝑵
𝒍 + 𝒅𝑭𝑭𝑵

𝒅𝑭𝑭𝑵
𝒅𝑭𝑭𝑵 + 𝟏

Roofline Model of NVIDIA A100

Operational intensity at different stages 
(FLOPs/Byte)

≫ 𝟏 ~𝟏
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What	is	the	Optimization	Space

Autoregressive Sampling ProcessFor designing the optimization space, we need to know the “bottleneck” 
modules or properties of the current algorithm, model, and software that 
hinders the efficiency of running them on the given hardware. 

Root causes of LLM inference inefficiency

• Application: The input / output token length can be very long.

• Algorithm: Autoregressive model samples tokens one by one.

• Model: (i) The transformer model has a large number of weights
and computations. (ii) Attention modules have quadratic
complexity w.r.t. the input token length.
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What	is	the	Optimization	Space

Model
• Large Model Scale
• Attention Operation

Algorithm
Autoregressive

Sampling Method

Cause Optimization IdeasCause what?

• Large computation
• Large memory access
• Large memory footprint

• Low operational intensity cause low 
compute utilization

• High end-to-end latency
• Dynamically increasing KV cache 

might cause memory fragmentation 
with a naïve system implementation, 
increasing both memory footprint and 
access cost

Application
Long Input/Output

Algori-
thm

modify the 
algorithm

Idea 1: Parallelize the sequential 
sampling of existing model?

Idea 2: Compress the input 
context to shorter one?

Idea 3: Don’t use autoregressive 
model?

Model
modify the

model

Idea 1: Remove redundant 
params/acts/computation? 

Static (model compression) or 
dynamic (dynamic inference)

Idea 2: Design novel 
lightweight structure (e.g., 

efficient FFN & attention)

System
modify the 
software & 
hardware

Focus 1: compiler/runtime 
lib/hardware for efficient NN 

execution
Focus 2: request scheduling / 

resource management for 
service-level objectives
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What	is	the	Optimization	Space
Optimization Ideas

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Operator-Level Opt.

Framework-Level Opt.

• Model Structure (e.g., #layer, #channel)
• Value Representation (e.g., low-bit 

representation)

Optimization Space

There is no representation/space or 
optimization formalization general
to many work. The design of these 
methods directly change a core application 
or algorithm property to improve efficiency.

• Computational Graph (e.g., fusion)
• Kernel Implementation
• Request scheduling, resource 

management, model placement
• Framework Implementation

Techniques
Idea 1: Parallelize the sequential 

sampling of existing model?

Idea 2: Compress the input 
context to shorter one?

Idea 3: Don’t use autoregressive 
model?

Algori-
thm

modify the 
algorithm

Idea 1: Remove redundant 
params/acts/computation? 

Static (model compression) or 
dynamic (dynamic inference)

Idea 2: Design novel 
lightweight structure (e.g., 

efficient FFN & attention)

Model
modify the

model

Focus 1: compiler/runtime 
lib/hardware for efficient NN 

execution
Focus 2: request scheduling / 

resource management for 
service-level objectives

System
modify the 
software & 
hardware Hardware-Level Opt. • Hardware Implementation
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Practical	Pipeline	of	Model/System-Level	Method	Design

Model-Level Design

Profile/Diagnosis Tool: Nsight System & Nsight Compute

Pe
rfo

rm
an

ce

Operational Intensity

Estimation According to Specifications include Application & Model & Hardware
Can estimate theoretically:
• Judge compute or memory 

bound of each module by 
roofline model

• Estimate bottleneck module
• Estimate overall objectives

Model Specification
• Num hidden layers
• Num key-value heads
• Hidden size
• Intermediate size
• Num attention heads
• Head dim

Application Specification
• Objectives, e.g., memory 

footprint, latency, throughput
• Context lengths
• Batch size
• …

Hardware Specification
• Peak Compute Performance
• Memory Capacity
• Memory Bandwidth

• Analyze compressing which dimension / how to redesigning the module 
might help with the efficiency most

• Analyze algorithmic redundancy & property, how can we retain/restore 
performance

System-Level Design (Operator-Level)
• Operation fusion to reduce memory access and kernel launch 

overhead
• Reimplement some operations

Page 56



GPU	Software	Stack

• NVIDIA GPU Diagnosis Tool
• Nsight System

• A system-level analysis tool used for diagnosing performance bottlenecks from a
global perspective and identifying key operators that require optimization.

• Taking LLaMA2-7B as an example, Nsight Systems can visualize all operators
and their calls across all inference stages. It enables researchers to quickly
pinpoint efficiency bottlenecks from a global perspective.
• Input length: 2048 tokens; decoding: 2 tokens

Prefill 1-step Decode

nsys nvprof -o {output-file} python3 xxx.py
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GPU	Software	Stack

• NVIDIA GPU Diagnosis Tool
• Nsight System

• A system-level analysis tool used for diagnosing performance bottlenecks from a
global perspective and identifying key operators that require optimization.

• Taking LLaMA2-7B as an example, Nsight Systems can visualize all operators
and their calls across all inference stages. It enables researchers to quickly
pinpoint efficiency bottlenecks from a global perspective.
• Nsight Systems analysis reveals that, during the decode stage, the General Matrix-Vector

Multiplication (GEMV) operator in the linear layer is the primary performance bottleneck.

nsys nvprof -o {output-file} python3 xxx.py
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GPU	Software	Stack
• NVIDIA GPU Diagnosis Tool

• Nsight Compute
• A kernel-level performance analysis tool focused on deep optimization of

individual CUDA kernels, used in conjunction with the Roofline Model for
performance analysis.

• Taking LLaMA2-7B as an example, using Nsight Compute to analyze the GEMV
operator in the linear layer shows that the operator is severely memory-bound.
• Solution approach: Apply INT4 quantization to the weights to reduce weight’s memory

access cost.

Pe
rfo

rm
an

ce
（

TF
LO

PS
）

Operational Intensity (FLOP/Byte)

Input 
channel

Output 
channel FP16 (us) INT4 (us)

4096 11008 159.3 52.0

11008 4096 45.6 37.6

4096 4096 43.5 23.0

ncu –set full -o {output-file} python3 xxx.py

RTX 3090 GPU
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GPU	Software	Stack
• NVIDIA GPU Diagnosis Tool

• Nsight Compute
• Taking LLaMA2-7B as an example

• Implementation: To achieve acceleration, the dequantization operator and the GEMV
computation operator need to be fused.

Dequantization

GEMV

Operator 
Fusion
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Example:	Design	Thought	of	Model	Compression	Method

• How to design a sparsification method for a given model and scenario
• Example: MoA[1]

Hardware 
efficiency 
evaluation

[1] Fu, Tianyu*, Huang, Haofeng*, Ning, Xuefei*, et al. “MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression.” CoLM 2025.

Sparse 
Attention

For long 
context, the 

attention 
operator 

incurs the 
highest 

computational 
cost.

Dynamic/Static

Algorithm 
performance 
evaluation

Heterogeneous 
attention pattern

Needs to be 
extensible/scalable 

for long context

Design extension 
rules of the attention 

span

Sparse patterns differ 
across different 

heads

Homogeneous 
sparse pattern

Data distribution 
visualization

Capability 
requirements for 
sparse models

Dynamic: 
low 

hardware 
efficiency

Static: 
high 

hardware 
efficiency
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What	is	the	Optimization	Space
Optimization Ideas

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Operator-Level Opt.

Framework-Level Opt.

• Model Structure (e.g., #layer, #channel)
• Value Representation (e.g., low-bit 

representation)

Optimization Space

There is no representation/space or 
optimization formalization general
to many work. The design of these 
methods directly change a core application 
or algorithm property to improve efficiency.

• Computational Graph (e.g., fusion)
• Kernel Implementation
• Request scheduling, resource 

management, model placement
• Framework Implementation

Techniques
Idea 1: Parallelize the sequential 

sampling of existing model?

Idea 2: Compress the input 
context to shorter one?

Idea 3: Don’t use autoregressive 
model?

Algori-
thm

modify the 
algorithm

Idea 1: Remove redundant 
params/acts/computation? 

Static (model compression) or 
dynamic (dynamic inference)

Idea 2: Design novel 
lightweight structure (e.g., 

efficient FFN & attention)

Model
modify the

model

Focus 1: compiler/runtime 
lib/hardware for efficient NN 

execution
Focus 2: request scheduling / 

resource management for 
service-level objectives

System
modify the 
software

Hardware-Level Opt. • Hardware Implementation
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Menu	of	Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model-
level

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Model Compression
• Quantization
• Sparse Attention
• Weight Pruning
• Sharing
• Knowledge Distillation

Dynamic Inference
• Module-granularity
• Model-granularity

Structure Design
• Mixture-of-Experts (Efficient FFN)
• Efficient AttentionSystem-

level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.
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Menu	of	Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model-
level

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Model Compression
• Quantization
• Sparse Attention
• Weight Pruning
• Sharing
• Knowledge Distillation

Dynamic Inference
• Module-granularity
• Model-granularity

Structure Design
• Mixture-of-Experts (Efficient FFN)
• Efficient AttentionSystem-

level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.
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Definition

• Motivation
Neural network weights and activations are typically represented using high-precision floating-point 
formats. However, there exists numerical redundancy in neural network computations, and using 
lower-precision arithmetic does not significantly affect the accuracy of the network [1].

• Definition
Quantization: Represent weights & activations with low-bit numbers, thereby storing them or 
computing them with reduced numerical precision.

* 图片来源: MIT EfficientML Course
[1] Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, Han et al., ICLR 2016.

IEEE 754 standard 32-bit floating-point data 8-bit fixed-point data 

Sign 1 bit Mantissa 7 bit

[-127, 128]
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• Offline stage: Model quantization procedure
• Convert the FP weights into low-bit-width weights
• Determine the quantization parameters for activations (optional, if using low-precision activation and not using 

online quant) Quantize floating-point weights (FP32/FP16) into low-bit weights (INT8/INT4).

• Online stage: Quantized inference procedure
• Low-Precision computation: LP arithmetic -> Requantization

• High-Precision computation: Dequant -> HP arithmetic -> (optional) Quant

Two	Procedures

Quantization 
Tools

FP32
Weights

INT8
Weights

int32int32
Linear Quant

Input
(int8)

Weight

int8

Bias

int16
Output
(int8)ActivationAccumulator

[1] https://nics-effalg.com/assets/ppt/2023-08-30-QLLMIntro.pdf
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Model	Quantization	Procedure

• Example: Uniform Fixed-Point Quantization
• A quantization method needs to answer: “How to 

convert floating-point numbers into fixed-point 
number representation? ”

• Quantization parameters: scaling factor (S); zero 
point (Z)

• How to decide quantization parameters? Take 
asymmetric quantization (Z ≠ 0) as an example, if 
we want the float-point range to cover [𝑟T"U, 𝑟TVW]:

* 图片来源: MIT EfficientML Course
[1] Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, Han et al., ICLR 2016.

Floating-pointFixed-point Rounding function
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Quantization

• Quantization Granularity
• For actual storage decrease and speed-up, a group of values needs to share the same quantization 

parameters (the group size is called quantization granularity, e.g., tensor-wisely, channel-wisely).

* 图片来源: MIT EfficientML Course
[1] Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, Han et al., ICLR 2016.

FP16

INTS Z

INT
INT
INT
INT

S Z
S Z
S Z
S Z

INT
INT
INT
INT

S Z
S Z
S Z
S Z

INT
INT
INT
INT

S Z
S Z
S Z
S Z

Tensor-wise quantization

Channel-wise quantization

Group-wise quantization
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Quantization

[1] Zhao, Ritchie, et al. "Improving neural network quantization without retraining using outlier channel splitting." International conference on machine learning. PMLR, 2019.

Large rounding error
(large scale factor)

Large truncation error
(small scale factor)

Well-balanced
(appropriate scale factor)

• Core focus of quantization parameter decision: Appropriately balance representational 
range and precision (i.e., balancing truncation error and rounding error).
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Quantization

• Two types of quantization process
• PTQ v.s. QAT

Pros
No weight optimization, 
No training cost,
Fast quantization 
process

Cons
Lack of recovery,
Difficult to quantize 
models to ultra-low 
bitwidth

Pros
Quantization with 
performance recovery, 
Enabling lower bitwidth

Cons
High computational 
cost and data 
demand

Pretrain Repara-
meterize

Quantizer
Selection

Weight 
quant. 

parameters

Adjust 
quant. value

Act. quant. 
parameters

PTQ Workflow

Quant. 
configuration

Training 
techniquesQAT

QAT Workflow

Repara-
meterize

Quantizer
Selection

PTQ
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Quantization

• Representative studies
Quantized Tensor Type Quantized 

Format
Quantized 
Criterion

Quantized Value 
UpdateWeight Activation KV Cache

GPTQ √ Uniform Statistic-based √
AWQ √ Uniform Search-based √

SqueezeLLM √ Non-uniform Statistic-based
GPT3.int8() √ √ Uniform Statistic-based

SmoothQuant √ √ Uniform Statistic-based √
RPTQ √ √ Uniform Statistic-based

OminiQuant √ √ Uniform Search-based
FlexGen √ √ Uniform Statistic-based

Atom √ √ √ Uniform Statistic-based
KVQuant √ Non-uniform Statistic-based

KIVI √ Uniform Statistic-based
[1] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).
[2] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device llm compression and acceleration." Proceedings of machine learning and systems 6 (2024): 87-100.
[3] Kim, Sehoon, et al. "Squeezellm: Dense-and-sparse quantization." arXiv preprint arXiv:2306.07629 (2023).
[4] Dettmers, Tim, et al. "Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale." Advances in neural information processing systems 35 (2022): 30318-30332.
[5] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." International conference on machine learning. PMLR, 2023.
[6] Yuan, Zhihang, et al. "Rptq: Reorder-based post-training quantization for large language models." arXiv preprint arXiv:2304.01089 (2023).
[7] Shao, Wenqi, et al. "OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models." ICLR. 2024.
[8] Sheng, Ying, et al. "Flexgen: High-throughput generative inference of large language models with a single gpu." International Conference on Machine Learning. PMLR, 2023.
[9] Zhao, Yilong, et al. "Atom: Low-bit quantization for efficient and accurate llm serving." Proceedings of Machine Learning and Systems 6 (2024): 196-209.
[10] Hooper, Coleman, et al. "Kvquant: Towards 10 million context length llm inference with kv cache quantization." Advances in Neural Information Processing Systems 37 (2024): 1270-1303.
[11] Liu, Zirui, et al. "KIVI: a tuning-free asymmetric 2bit quantization for KV cache." Proceedings of the 41st International Conference on Machine Learning. 2024.
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SmoothQuant

• Typical PTQ Method: SmoothQuant[1]

[1] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.

Motiv
ation

Insight• In large models, activations often contain 
extremely large outliers, leading to 
significant quantization errors during W8A8 
quantization.

• This study focuses on analyzing the data 
distribution patterns of the model and 
exploring methods to reduce outliers, 
aiming to achieve nearly lossless W8A8 
quantization.

Freque
ncy

Val
ue

Outliers

Analysis of weight and 
activation data distribution

• Outliers in large-model activations appear in 
specific channels. This property can be 
leveraged to balance the data distribution of 
weights and activations.
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SmoothQuant

Method

[1] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.
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AWQ
• Typical PTQ Method: AWQ[1]

Motiv
ation

• Not all weights in an LLM are equally 
important. 

• Protecting only 1% salient weights 
can greatly reduce quantization 
error.

Methods To consider bothsalient and non 
salient weights, AWQ searches for 
an optimal scaling factor that 
minimizes the reconstruction error 
for a certain layer. 

[1] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device llm compression and acceleration." Proceedings of machine learning and systems 6 (2024): 87-100.
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FlatQuant:	Flatness	Matters	for	LLM	
Quantization

• Motivation: Affine transformations are more powerful to suppress outliers
• Methodology: Learning affine transformations for each linear layer

• Reducing transformation overhead: Kronecker product & kernel fusion

[1] Sun, Y., Liu, R., Bai, H., et al. "FlatQuant: Flatness Matters for LLM Quantization". ICML 2025.
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FlatQuant:	Flatness	Matters	for	LLM	
Quantization

How to Integrate FlatQuant with the Transformer architecture?

Integration with 
Self-attention

Integration with feed-
forward network
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FlatQuant:	Flatness	Matters	for	LLM	
Quantization

The mean square error of quantization along channels & tokens can be effectively reduced
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IntactKV:	Keeping	Pivot	Tokens	Intact
Observation: the pivot tokens exhibit attention sinks together with massive activation outliers.

[1] Ruikang Liu, Haoli Bai†, et.al. IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact. Findings of ACL, 2024.
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IntactKV:	Keeping	Pivot	Tokens	Intact
Avoid the quantization error accumulated on pivot tokens that are critical to the performance.

[1] Ruikang Liu, Haoli Bai†, et.al. IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact. Findings of ACL, 2024.

• System KV cache 
are generated by the 
BF16 model

• They can be further 
trained like LLM 
parameters

• The system prompt 
contains most pivot 
tokens with massive 
outliers

• The rest KV cache 
are generated by 
quantized model
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Evaluating	Quantized	Models

Paper link Open source

[1] Li, S., et al. "Evaluating Quantized 
Large Language Models." ICML 2024.
• Evaluation Dimensions

• Effects of quantization on 5 major categories of 
tasks

• Effects of quantization on 11 model families
• Effects of quantizing 3 tensor types on model 

performance
• Application scope of SOTA quantization 

methods
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Evaluating	Quantized	Models

[1] Li, Shiyao, Ning, Xuefei, et al. "Evaluating Quantized Large Language Models." ICML2024.

• Effects of Quantization on Tensor Types
• The larger the model size, the higher the tolerance for Weight and KVcache Quantization, 

and the lower the tolerance for Activation Quantization. 
• The larger the model size, the fewer outliers in the Weight and KV Cache tensors, and 

the more outliers in the Activation tensors. 
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Evaluating	Quantized	Models

[1] Li, Shiyao, Ning, Xuefei, et al. "Evaluating Quantized Large Language Models." ICML2024.

• Effects of Quantization on Emergent Abilities
• The tolerance to quantization varies across the four abilities, listed in descending order of 

tolerance: In-context Learning ∼ Instruction Following > Multi-Step Reasoning ~ Self-
calibration.
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Evaluating	Quantized	Reasoning	Models

[1] Liu, R., Sun Y., Zhang M., Bai H., et al. "Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models". COLM 2025.

• Reasoning LLMs: Qwen 1.5B - 32B distilled from DeepSeek-R1
• Hard tasks (e.g., AIME) suffer more than easier ones (e.g., GSM8K)

• W8A8 and W4A16 is safe to use (<1% acc drop)
• W4A4 and KV4 can be still risky in practice
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Evaluating	Quantized	Reasoning	LLMs

[1] Liu, R., Sun Y., Zhang M., Bai H., et al. "Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models". COLM 2025.

The scaling effect of quantized reasoning LLMs
• (a) & (b): Large quantized LLMs are preferred to small BF16 LLMs w.r.t. size and latency
• (c) Test-time scaling: higher accuracy with more reasoning tokens, but at a slower rate 

when compared to BF16 models

(a) Model Size (GB) (b) Latency (s) (c) Test-time Scaling
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Model-level:	Sparse	Attention
• Sparse Attention

• Omit certain attention calculations
• to enhance computational efficiency: saving computation on S and O

• Static vs Dynamic Mask
• Static Mask: the attention mask is predefined and remains fixed.
• Dynamic Mask: the attention mask is determined online based on the input.
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Model-level:	Sparse	Attention
• Sparse Attention

• Sparse Pattern: local, global, random, dilated
• Granularity: blockwise

• Token pruning vs clustering vs merging

block size

Token pruning Token mergingToken clustering

cluster 0 cluster 1retained pruned

token
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Sparse	Attention
• Representative studies

Mask Generation Sparse Pattern
Static Dynamic Local Global Dilated Random Clustering Pruning Merging

Sparse 
Transformers √ √ √ √

StreamingLLM √ √ √
BigBird √ √ √ √
Spatten √ √

Reformer √ √
H2O √ √ √
MoA √ √ √
NSA √ √ √ √

[1] Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv preprint arXiv:1904.10509 (2019).
[2] Xiao, Guangxuan, et al. "Efficient Streaming Language Models with Attention Sinks." The Twelfth International Conference on Learning Representations.
[3] Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." Advances in neural information processing systems 33 (2020): 17283-17297.
[4] Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head pruning." 2021 IEEE International Symposium on High-Performance 
Computer Architecture (HPCA). IEEE, 2021.
[5] Kitaev, Nikita, Lukasz Kaiser, and Anselm Levskaya. "Reformer: The Efficient Transformer." International Conference on Learning Representations.
[6] Zhang, Zhenyu, et al. "H2o: Heavy-hitter oracle for efficient generative inference of large language models." Advances in Neural Information Processing Systems 36 (2023): 34661-34710.
[7] Fu, Tianyu, et al. "Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.
[8] Yuan, Jingyang, et al. "Native sparse attention: Hardware-aligned and natively trainable sparse attention." arXiv preprint arXiv:2502.11089 (2025).
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StreamingLLM

• Sparse Attention: StreamingLLM

Motiv
ation

Metho
d

• Sliding-window attention 
mechanism discards part of the 
long-term historical information 
that is rarely needed, but this 
often results in severe 
performance degradation.

[1] Xiao, Guangxuan, et al. “Efficient Streaming Language Models with Attention Sinks.” ICLR 2024.

Wikitext PPL
5158

• Key finding: LLMs tend to assign 
attention scores to the initial 
tokens (attention sink).

• Therefore, StreamingLLM not only 
retains sliding-window attention but 
also preserves the attention scores 
of the initial tokens.

Wikitext PPL
5.40
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MoA

[1] Fu, Tianyu, et al. "Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.

Insigh
t

🔍 Different attention heads have 
different attention spans, requiring 
heterogeneous sparse attention.

Short Input

Long Input

?

🔍 Different input lengths 
have different attention 
span growth patterns, 

requiring appropriate length 
growth rules.

• Sparse Attention: MoA

Motiv
ation

homogeneous 
sparse mask

• Existing methods apply a 
homogeneous sparse mask to each 
attention head, which fails to capture 
the diverse attention patterns in 
LLMs and consequently leads to a 
significant drop in model 
performance.

StreamingLLM [2] with 
fixed-length local attention and

global attention on the initial tokens

A
tte

nt
io

n 
Sp

an
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MoA

Metho
d

Heterogeneous search space
Construct a search space of sparse 

schemes that includes different sparse 
attention patterns and their variation 

rules with sequence length.

Analyze attention value importance
Based on gradients, analyze the impact of 
different attention values on the prediction 
results, and obtain the accuracy–sparsity 

trade-off curve for different sparse schemes.

Optimization
Formulate an optimization problem to 
select sparse patterns under sparsity 
constraints, minimizing the impact of 

sparse attention on accuracy.

• Different attention heads: require searching for different sparse attention span.
• Different input lengths: require searching for suitable attention span growth rules for 

different attention heads.

[1] Fu, Tianyu, et al. "Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.
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MoA

Accuracy-Throughput

1.7x-1.9x
Throughput Improvement
Compared with VLLM on 
7B and 13B LLMs using 

50% attention sparsity on 
A100-80GB GPUs

EfficiencyNeedle-in-a-haystack Task

3.9x
Effective context length

256k
Extrapolatable input length

Long Context Understanding Task

7-70B models
50% sparsity

Accuracy 
Improvement

Vicuna-7B, 8K input length

Code

Increase the inference throughput by about 7×.
Expand the effective context length by 3.9×.

Resul
ts

[1] Fu, Tianyu, et al. "Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths." Second Conference on Language Modeling.
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NSA

MethodMotivation
• Applying sparsity post-hoc forces 

models to deviate from their 
pretrained optimization trajectory and 
causes performance degradation.

Training:
Dense attention

Inference: 
Sparse attention

• Use different sparse patterns and enable 
end-to-end training.

• Sparse Attention: NSA

1. Token Merging
Merge multiple 

tokens into coarse 
representations.

2. Token Selection
Retain only the most 
important tokens to 

apply on fine-grained 
attention.

3. Local
Attends to nearby 

tokens within a 
sliding window.

[1] Yuan, Jingyang, et al. "Native sparse attention: Hardware-aligned and natively trainable sparse attention." arXiv preprint arXiv:2502.11089 (2025).
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reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner
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design novel structure, which often 

require training

Model Compression
• Quantization
• Sparse Attention
• Weight Pruning
• Sharing
• Knowledge Distillation

Dynamic Inference
• Module-granularity
• Model-granularity

Structure Design
• Mixture-of-Experts (Efficient FFN)
• Efficient AttentionSystem-

level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.
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Model-level:	Weight	Pruning
• Weight Pruning

• Remove less critical weights and structures from models

Unstructured Pruning
Granularity: Weight

Structured Pruning
Granularity: Channel/Group/Layer

Unstructured 
Pruning

Structured 
Pruning

Granularity Individual weight values Structural units, e.g., channels, 
layers, experts

Performance 
loss

Low High

Actual speed-up 
on hardware

No Yes

Research 
directions

(1) accelerate pruning process
(2) design effective pruning 

strategies (e.g., pruning metrics, 
pruning ratios)

(1) decide structured pattern
(2) design effective pruning 

metrics

Representative
Studies

SparseGPT, Prune and Tune, ISC, 
BESA

LLM-Pruner, LLaMA-Sheard, 
ZipLM, LoRAPrune, EEP
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SparseGPT

Idea Method

[1] Elias Frantar, et al. “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot” ICML 2023.

• Removing weights and updating the 
remaining ones to compensate for the 
error.

• Incrementally prune weights in each column of the 
weight, using a sequence of Hessian inverses, 
and updating the remainder of the weights.

• Type: Unstructured Pruning
• Granularity: Individual weight values

Category
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SparseGPT

Results

[1] Elias Frantar, et al. “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot” ICML 2023.

• High Sparsity, Low Accuracy Loss: Prunes OPT-175B to 60% sparsity in 
one shot with a negligible increase in perplexity

• High Efficiency: Process the 175-billion-parameter models in under 4.5 
hours, removing more than 100 billion weights.
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LLM-Pruner

Idea Methods

[1] Xinyin Ma, et al. “LLM-Pruner: On the Structural Pruning of Large Language Models” Neurips 2023.

• Identify and remove non-critical, coupled
structures.

• LLM-Pruner automatically identifies and 
removes non-critical, coupled structures 
based on gradient information, and recovers 
performance using a LoRA with a small 
dataset.

• Type: Structured Pruning
• Granularity: Head, Channel

Category
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Channel	Permutation	for	Better	N:M	Sparsity

Page 100

Find a permutation strategy that preserves more important parameters under N:M sparsity

[1] Zhang, Y., Bai, H., et al. "Plug-and-play: An Efficient Post-training Pruning Method for Large Language Models". ICLR 2024.

2:4 Sparsity
2 zeros out of every 4 
contiguous elements
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Sharing

Shared Tensor Type

Weight KV Cache

Subformer √

MobileLLM √

Dynamic layer tying √

LCKV √

CLA √

• Definition
Reuse parameters, states, or intermediate results across different parts of the model.

• Shared Tensor Type

Block

Block

Block

…

Weight 
Sharing

KV Cache
Sharing

[1] Reid, Machel, Edison Marrese-Taylor, and Yutaka Matsuo. "Subformer: Exploring weight sharing for parameter efficiency in generative transformers." arXiv preprint arXiv:2101.00234 (2021).
[2] Liu, Zechun, et al. "Mobilellm: Optimizing sub-billion parameter language models for on-device use cases." Forty-first International Conference on Machine Learning. 2024.
[3] Hay, Tamir David, and Lior Wolf. "Dynamic Layer Tying for Parameter-Efficient Transformers." The Twelfth International Conference on Learning Representations.
[4] Wu, Haoyi, and Kewei Tu. "Layer-Condensed KV Cache for Efficient Inference of Large Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational 
Linguistics (Volume 1: Long Papers). 2024.
[5] Brandon, William, et al. "Reducing transformer key-value cache size with cross-layer attention." Advances in Neural Information Processing Systems 37 (2024): 86927-86957.
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MobileLLM

[1] Zechun Liu, et al. “MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases” ICML 2024.

Idea Methods

• MobileLLM

• Weight sharing between two 
adjacent blocks avoids weight 
movement, requiring only 
computing the  block twice 
and incurring minimal latency 
overhead.

• Type: Weight Sharing

Category

• Design three different weight-sharing strategies: 

Immediate block-
wise sharing

Repeat-all-over 
sharing

Reverse 
sharing
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LCKV
• Layer-Condensed KV Cache

[1] Haoyi Wu, et al. “Layer-Condensed KV Cache for Efficient Inference of Large Language Models” ACL 2024.

Motivation Methods
• In LCKV, all layers attend to only the top 

layer's KVs. 
• A few "warmup" layers with standard 

attention are kept to maintain performance.

• Existing methods focus on compressing the 
KV cache sequence length.

• This approach reduces the number of 
cached layers, not just the sequence length.
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Knowledge	Distillation
• Motivation
Although the compressed lightweight model achieves better hardware efficiency, its accuracy is
lower under conventional training methods. It is necessary to design training approaches to
achieve better accuracy recovery.
• Definition
Knowledge Distillation: Use a teacher model to guide the training of a student model, enabling
the student model to learn the “knowledge” of the teacher model to help improve its accuracy.

The teacher model (large) helps the student 
model (small) recover accuracy.

Teacher Student
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Knowledge	Distillation
• Aligning Objective

Block Block

Block Block

Block Block

… …

Logits Logits

Data Data

1. Feature

2. Logits

3. Data

Teacher Student
Objective

Feature Logits Data

TED √

MiniLLM √

GKD √

DISCO √

MCKD √

DeepSeek-R1 √

[1] Liang, Chen, et al. "Less is more: Task-aware layer-wise distillation for language model compression." International Conference on Machine Learning. PMLR, 2023.
[2] Gu, Yuxian, et al. "MiniLLM: Knowledge Distillation of Large Language Models." The Twelfth International Conference on Learning Representations.
[3] Agarwal, Rishabh, et al. "Gkd: Generalized knowledge distillation for auto-regressive sequence models." CoRR (2023).
[4] Chen, Zeming, et al. "DISCO: Distilling Counterfactuals with Large Language Models." Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023.
[5] Zhao, Jiachen, et al. "Multistage collaborative knowledge distillation from large language models." arXiv preprint arXiv:2311.08640 (2023).
[6] Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).
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Page 108



Model-level:	Dynamic	Inference

• Motivation & Definition
• During neural network inference, not all data needs to go through the same 

computation flow. The core design idea of dynamic inference algorithms is to 
determine the required computations based on the runtime input data. 

• What is the data granularity for dynamic inference (e.g., query-level, token-level, etc.)
• Which dimensions are dynamically adjusted (e.g., layer, model)
• How to dynamically adjust the corresponding dimensions based on input data (e.g., training 

a router)

[1] Dynamic Neural Networks: A Survey, Han et al., IEEE Transactions on Pattern Analysis and Machine Intelligence.

MoE: Token-level dynamic module routing R2R: Token-level dynamic model routing
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Mixture-of-Depths

[1] David Raposo, et al. “Mixture-of-Depths: Dynamically allocating compute in transformer-based language models.” ArXiv 2024.

• Mixture-of-Depths

Idea Methods
• At specific layers, a learned router selects the 

top-k most important tokens to be processed 
by the self-attention and MLP blocks, while 
other tokens bypass these computations 
through a simple residual connection. 

• In language modeling, not all tokens 
and sequences require the same time 
or effort to accurately make a 
prediction.

Category

• Data Granularity: token-level
• Dimension: layer
• Method: training a router
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RouteLLM

[1] David Raposo, et al. “RouteLLM: Learning to Route LLMs with Preference Data.” ArXiv 2024.

Motivation Methods
• RouteLLM trains a router model on human 

preference data to intelligently direct queries to 
either a strong, expensive LLM or a weak, cheap
one.

• Direct simpler queries to smaller 
models and more complex ones to 
larger models to balance response 
quality with cost efficiency.

• RouteLLM

• routers outperform 
random baselines

Category

• Granularity:query-level
• Dimension: model
• Method: similarity-based 

retrieval / training a router 
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Recent	Work:	SLM-LLM	Mix	Inference	(R2R)
Use small language model (SLM) and LLM for different reasoning steps

Given same context, SLM and LLM
predictions are often identicalMotivation InsightFast but weak SLM 

slow but strong LLM

Type Model Accuracy Latency 
(s / question)

SLM R1-1.5B ☹ 9% ☺ 199

LLM R1-32B ☺ 45% ☹ 498

Tested results on AIME’24-25

We should selectively use SLM and LLM for 
different generation steps, constructing a fast and 
strong mix-inference method

• 89% identical predictions
• 11% different predictions

• some are neutral, like 
alternative expressions

• only few diverge the 
meaning, logic, or 
conclusion of reasoning

89
%

5%

6%
11
%differentidentical

neutral

divergent

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurIPS’25. [Under Review]
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Recent	Work:	SLM-LLM	Mix	Inference	(R2R)

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurIPS’25. [Under Review]

Train neural router, 
route to LLM for divergent SLM tokens

Label divergent token, then train a neural token-router,
utilizing LLMs only for path-divergent tokens during SLM generation

Method MethodLabel divergent tokens
generate model preference training data

SLM:

LLM:

output:

It’s 99 It’s hard,

It’s hard
✔

It’s

hard

It’s hard, re

re

✔

input:

, 

It’s hard, rewrite

write

✔

Key idea: 
Step1. find all predictions where SLM-LLM differ
Step2. from the difference, let LLM continue generation until the end 
of current sentence, to understand difference’s impact
Step3. ask another LLM to verify if difference causes divergence

Routing scheme:
We train a 56M neural router
Given SLM output token & its last-layer hidden states,
it classifies whether this token is divergent,
Immediately route to LLM if predicted as divergent
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Experimental	Results

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurIPS’25. [Under Review]

Mixing R1-1.5B & 32B, uing R2R with 5.6B avg. activated param. per token
achieve performance exceeding R1-14B

Result Performance-Efficiency 
Pareto Frontier

For R2R-5.6B (mix R1-1.5B & 32B)
• Comparing R1-14B, 1.50x speedup, 1.07x accuracy
• Comparing R1-32B, 2.76x speedup, achieving 92% of 

its accuracy with only 11%-15% LLM usage

Demo

same avg. parameter, better accuracy

Reaching 84.3 token/s
on two A800-80GB GPUs

R1-32B
Finished in: 1min 12s

R2R
Finished in: 32s

source 
code
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Model-level:	Efficient	Structure	Design
• Efficient structure design

• Efficient FFN design: Mixture-of-Expert (MoE, one common architecture
follow the dynamic inference idea) • Expert: module to process different inputs• Shared expert: an expert module that is always 

active for every input
• Expert granularity: the FFN intermediate 

hidden dimension

• Router: direct the input to the appropriate 
expert networks
• Basically, each token is routed to a fixed 

number of experts based on scores 
produced by the router.• In training or multi-batch inference scenarios, 
load balancing among experts also needs to be 
considered.[1]

[1] Mu, Siyuan, and Sen Lin. "A comprehensive survey of mixture-of-experts: Algorithms, theory, and applications." arXiv preprint arXiv:2503.07137 (2025).
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MoE

Motivation Methods
• Segment the experts into a finer grain by 

splitting the FFN intermediate hidden dimension.
• Isolate certain experts to serve as shared 

experts that are always activated.

• The designated expert will intend 
to assemble different types of 
knowledge in its parameters, 
which are hard to utilize 
simultaneously.

• Multiple experts may converge in 
acquiring shared knowledge in 
their respective parameters, 
leading to redundancy in expert 
parameters.

• DeepSeekMoE

[1] Dai, Damai, et al. "DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models." Proceedings of the 62nd Annual Meeting of the Association for 
Computational Linguistics (Volume 1: Long Papers). 2024.
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Efficient	Attention	mechanism
• Efficient structure design

• Efficient Attention mechanism

Different heads 
share a single set 
of keys and 
values.

Low-rank compression for keys 
and values to reduce KV 
cache.

[1] Liu, Aixin, et al. "Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model." arXiv preprint arXiv:2405.04434 (2024).
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Model-level:	Efficient	Structure	Design
• Efficient structure design

• Non-Transformer architecture design
• State Space Model (SSM)

• core idea: compress token information into hidden state

Research directions:
1. Design better parametrization or initialization strategy.
2. Design better model architecture based on SSM.
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Mamba

Motivation Methods• Linear-time-invariant (LTI) 
SSMs cannot efficiently 
select data in an input-
dependent manner.

• Mamba
• Let the SSM parameters be 

functions of the input, 
allowing the model to 
selectively propagate or 
forget information 
depending on the current 
token.

[1] The router can direct simpler queries to smaller models and more complex ones to larger models, thereby balancing response quality with cost efficiency.
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Menu	of	Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model-
level

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.

System-
level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.

Page 121



Design	Space

2025/11/8

• System Design: Operator-level Optimization

Operator-level Optimization

Computation 
Graph Operator

Operator 
Fusion

Computation 
Opt.

Memory 
Opt.

max. 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,
s. t. 𝑢𝑠𝑎𝑔𝑒 ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒.

AI algorithm

Computation graph and operators

Intermediate representation 
and hardware instructions

Hardware

Software 
Level

Hardware 
Level

Model

Xuefei Ning @ NICS-efc Lab



Operator-level	Optimization

Page 123

Method Optimizes the hardware utilization by tailoring 
workload mapping to hardware specifications

WQ WV

WO

Multi-head Self-Attention

WK

K Cache V Cache

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Act.

Q K V

A transformer block

FC1

FC2

Act.

FlashAttention

（NeurIPS 22）
Reduces the 
memory footprint 
by fusing attention 
into one kernel

（arXiv 23）
Uses sequence 
partitioning for 
decoding, 
achieving up to 50x 
speedup for long 
texts

FlashDecoding

FlashDecoding++

（MLSys 24）
Reduces the update overhead of 
attention operator and optimizes 
GEMM in decoding, achieving up 
to 4x end-to-end speedup

FlashInfer
（MLSys 25 Best Paper）
Dynamically aware 
workload allocation and 
using unified mask 
representation
13%-69% e2e speedup

（~2007-present）
NVIDIA GPU’s 
official library
Achieves over 90% 
peak utilization of 
Tensor Cores

cuBLAS

Attention Operator

Core of Transformer

Matmul Operator

Main Operator of NN
with Highly Optimized 
Linear Algebra Libraries

*Matmul: Matrix Multiplication
Xuefei Ning @ NICS-efc Lab



Matmul Operator

• Implementation of Matmul on GPU
• Observation: No dependencies in C,
→ Parallel computation
• Method: Each thread loads a row of A and a

column of B → computes → writes to C

2025/11/8 Page 124

𝐶0×0 = 𝐴0×0×𝐵0×0

A

B

CComputational-to-Memory Ratio
An important metric for measuring GPU utilization

Higher value → Higher compute unit utilization

Comp−to−Mem Ratio =
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡
𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠 𝑎𝑚𝑜𝑢𝑛𝑡

*Total computation: 2*4*4*4=128FLOP. Total memory access: 4*(2*4*4*4)=512Byte

Comp-to-Mem Ratio is only 0.25FLOP/Byte in this example

Xuefei Ning @ NICS-efc Lab



Matmul Operator

• Implementation of Matmul on GPU

2025/11/8 Page 125

𝐶0×0 = 𝐴0×0×𝐵0×0

A

B

C

Operator Implementation:
__global__ void MatMul(int *A, int *B, int *C, int width) {

//eg. width=4
int row = threadIdx.y; 
int col = threadIdx.x;

if (row < width && col < width) {
int sum = 0;
for (int k = 0; k < width; k++) {

sum += A[row * width + k] * B[k * width + col];
} //Each thread processed one row of A, one column of B
C[row * width + col] = sum; 
//Write result to the corresponding position of C

}
}

Xuefei Ning @ NICS-efc Lab



Matmul Operator

• Computation Optimization: Tiling
• Motivation: Maximize GPU compute utilization

• Method: Increasing tile size.
Example: 1 thread → 2 rows of A & 2 cols of B
→ 4 elements in C

2025/11/8 Page 126

A

B

C

𝐶0×0 = 𝐴0×0×𝐵0×0

Tiling raises Comp-to-Mem Ratio to 
0.5FLOP/Byte

*Total compute: 128FLOP!Total access reduces to4*(2*4*4*4)/2=256Byte

⚠ Oversized tiles reduce parallelism. The 
key is balance.

Xuefei Ning @ NICS-efc Lab



Matmul Operator

• Computation Optimization: Tiling

2025/11/8 Page 127

A

B

C

𝐶0×0 = 𝐴0×0×𝐵0×0Operator Implementation:
__global__ void MatMulTiling(int *A, int *B, int *C, int width) {

//eg. TILE_WIDTH=2
int tx = threadIdx.x;  int ty = threadIdy.y;
for (int i = 0; i < TILE_WIDTH; i++) {

for (int j = 0; j < TILE_WIDTH; j++) {
int row = ty * TILE_WIDTH + i; 
int col = tx * TILE_WIDTH + j; 

int sum = 0;
for (int k = 0; k < width; k++) {

sum += A[row * width + k] * B[k * width + col];
} //Read A and B from global memory and compute
C[row * width + col] = sum;

}
} //Each thread processes 2 rows of A and 2 columns of B

}
Xuefei Ning @ NICS-efc Lab



Matmul Operator

• Memory Optimization: Using Shared Memory
• Motivation: Enable data sharing and fast communication

between threads

• Method: Load A and B into shared memory for reuse
→ reduce global memory access

2025/11/8 Page 128

𝐶0×0 = 𝐴0×0×𝐵0×0

A

B

C

C2,2A$

B$

Comp-to-Mem Ratio reaches 1FLOP/Byte

*store A and 𝐵 into shared memory, total memory access reduces to 128Byte

Store in SMEM
(Shared memory)

Xuefei Ning @ NICS-efc Lab



Matmul Operator

• Memory Optimization: Using Shared Memory

2025/11/8 Page 129

Operator Implementation:
__global__ void MatMul_shared(int *A, int *B, int *C, int width) {

__shared__ int sharedA[width][width]; // Declare shared memory
__shared__ int sharedB[width][width];
int tx = threadIdx.x;   int ty = threadIdx.y;

sharedA[ty][tx] = A[ty * width + tx]; // Write to SMEM
sharedB[ty][tx] = B[ty * width + tx];
__syncthreads(); // Sync all threads
for (int i = 0; i < TILE_WIDTH; i++) {

for (int j = 0; j < TILE_WIDTH; j++) {
// Read from SMEM & compute (row/col calculation are omitted)
for (int k = 0; k < width; k++) {
sum += sharedA[row][k] * sharedB[k][col];

}
C[row * width + col] = sum;

}
}

}

𝐶0×0 = 𝐴0×0×𝐵0×0

A

B

C

C2,2A$

B$

Store in SMEM
(Shared memory)

Xuefei Ning @ NICS-efc Lab



Matmul Operator
• Special Hardware: using Tensor Core

• Why: CUDA Cores bottleneck at large-scale matrix ops in deep learning
• Tensor Core:

• NVIDIA's dedicated DL cores.
• First introduced in Volta (2017)

• Input: 16bit → Multiply-accumulate → Stored in 32-bit registers

2025/11/8 Page 130

The V100 GPU uses 
Tensor Cores achieves 2×
speedup over the P100[1]

[1] https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Xuefei Ning @ NICS-efc Lab

16bit 16bit 16bit 16bit 16bit 16bit 16bit 16bit

32bit

×

+
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×

+

A%,# "$,%

×

+
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×

+

A',# "$,'

32bit

32bit

32bit

32bit



Matmul Operator

• Special Hardware: using Tensor Core
• CUDA provides mma.h and wmma API for Tensor Core operations

2025/11/8 Page 131

Pesudo code：
#include <mma.h>
__global__ void MatMul_mma(half *a, half *b, float *c, int M, int N, int K) {

// Declare fragments (16x16x16 tile size)
wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag; 

wmma::fill_fragment(c_frag, 0.0f); // Init accumulator
wmma::load_matrix_sync(a_frag, a, K);
wmma::load_matrix_sync(b_frag, b, N);
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag); // MM on Tensor Core

wmma::store_matrix_sync(c, c_frag, N, wmma::mem_row_major); // Store result
}

Xuefei Ning @ NICS-efc Lab



Decoder-only	LLM	Inference

Page 132

• Decoder-only LLM Inference!Two distinct phases
• Prefill phase: Handling input prompts, saving generated K and V in KV Cache
• Decode phase: Update and use KV cache for computing Attention to generate a new token

Output: [‘Processing’] (1*dim)

WQ WV

WO

Multi-head Self-Attention

WK

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Prompt: ['I', 'like', ‘natural', ‘language’] (4*dim)

WQ WV

WO

Multi-head Self-Attention

WK

K 
Cache

V 
Cache

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Prompt: [‘I’, ‘like’, ‘natural’, ‘language’, ‘Processing] (1*dim)

Output: [‘!’] (1*dim)

KV cache 
expands with 
each token

2025/11/8 Xuefei Ning @ NICS-efc Lab



Attention	Operator

• Prefill Optimization: FlashAttention[1,2,3]
• FlashAttention optimizes attention computation in prefill phase
• One of the most widely adopted acceleration methods with 16.2k GitHub stars[4]

2025/11/8 Page 133

[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in neural information processing systems 35 (2022): 16344-16359.
[2] Dao, Tri. "Flashattention-2: Faster attention with better parallelism and work partitioning." arXiv preprint arXiv:2307.08691 (2023).
[3] Shah, Jay, et al. "Flashattention-3: Fast and accurate attention with asynchrony and low-precision." Advances in Neural Information Processing Systems 37 (2024): 68658-68685.
[4] https://github.com/Dao-AILab/flash-attention

Xuefei Ning @ NICS-efc Lab



Attention	Operator
• Prefill Optimization: FlashAttention[1,2,3]

• Why：Complex Attention I/O; Large activation memory
• How：Operator fusion, including fwd and bwd
• Results：2-4x speedup; memory: 𝑂 𝑁: → 𝑂(𝑁)

Page 134

Tiling strategies differ between fwd/bwd passes

[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in neural information processing systems 35 (2022): 16344-16359.
[2] Dao, Tri. "Flashattention-2: Faster attention with better parallelism and work partitioning." arXiv preprint arXiv:2307.08691 (2023).
[3] Shah, Jay, et al. "Flashattention-3: Fast and accurate attention with asynchrony and low-precision." Advances in Neural Information Processing Systems 37 (2024): 68658-68685.

Saves I/O & memory via operator fusion

Xuefei Ning @ NICS-efc Lab



Attention	Operator

• Decode Optimization: FlashDecoding[1]
• Why: only 1 token/step in decode → using prefill tiling strategy directly causes low GPU

utilization

2025/11/8 Page 135

Prefill tiling

Using prefill 
tiling directly 

in decode

tiling

tiling

SM1

SM1

SM2

SM3

SM4

SM2

[1] https://crfm.stanford.edu/2023/10/12/flashdecoding.html

Attention map

Attention map

Fully utilizes
GPU SMs

SM3!SM4 idle!

Xuefei Ning @ NICS-efc Lab



Attention	Operator
• Decode Optimization: FlashDecoding[1]

• Method: Increases matrix tile count to boost SM utilization, achieving higher GPU
efficiency

2025/11/8 Page 136

[1] https://crfm.stanford.edu/2023/10/12/flashdecoding.html

tiling SM1

SM2

FlashDecoding

tiling
SM1

SM2

SM3

SM4 Achieves 5-10x compute speedup

Using prefill 
tiling directly 

in decode

Expand tiling 
dimensions

SM3!SM4 idle!

Xuefei Ning @ NICS-efc Lab



FlashDecoding++

Page 137

Attention & Matmul operators still optimizable in LLM inferenceMotivation

Matmul"cuBLAS[2], CUTLASS[3]#Attention"FlashAttention[1]#

Online Softmax → Global reduction causes 
significant update overhead

Inefficient tiling for “short-wide” matrices 
in decode phase

Original Softmax
All elements wait for global 

reduction

Online Softmax
Global reduction via 
incremental updates

[1] Dao T, Fu D, Ermon S, et al. Flashattention: Fast and memory-efficient exact attention with io-awareness[J]. Advances in neural information processing systems, 2022, 35: 16344-16359.
[2] https://developer.nvidia.com/cublas
[3] https://github.com/NVIDIA/cutlass

B1
B2
B3

A1 A2 A3 C1…

…

C
B

AM
K N

C2

B’1
B’2
B’3

BK

BN

…

K
K

N

N* =
GEMM Shape: M, K, N

Decode 
phase

M dimension = batch 
size

Low Parallelism Update 
Overhead

Update 
Overhead

Xuefei Ning @ NICS-efc Lab



FlashDecoding++
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Suboptimal implementation against various Matmul shapes

Wrong low-level implementation choice → Significant performance loss

[1] https://github.com/wangsiping97/FastGEMV
[2] https://developer.nvidia.com/cublas
[3] https://github.com/NVIDIA/cutlass

M=32
K=4096

N=11008

M=3
K=5120
N=5120

M=1024
K=1024
N=1024

…

FastGEMV
Vector unit-based

Flat GEMM
Shape-optimized

cuBLAS
General-purpose

Various 
Matmul
Shapes

Different
Implementations

…
Manual

implementatio
n

Model 
specs

Input 
dynamics

Hardware
capability

Shape 1: M=1, K=4096, N=4096]

FastGEMV is 20% faster
than cuBLAS

Shape 2: M=4, K=4096, N=4096]

Flat GEMM is 50% faster 
than FastGEMV

Motivation

Xuefei Ning @ NICS-efc Lab



FlashDecoding++
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Leverage value distribution in LLM inference to 
optimize Attention operator[1]

Remove Update Overhead via Preset MaxMathematical Equivalence &
Numerical Feasibility

0 10 40-70 -20 -10

Llama2-7B

[-16.8] [6.5]

0 10 40-70 -20 -10

ChatGLM2-6B

[-16.8] [6.5]

OPT-6.7B

0 20 60-440 -40 -20

[71.6][-440.2]

99.99%

80

99.99% 99.99%

Arbitrary max value
Precision loss only from 

data type overflow

Data shows no FP32 
overflow in 99.99% 

cases

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.

Online softmax
Parallel but large update 

overhead

Mathematical 
Equivalence

Numerical 
Feasibility

Async softmax
Parallel with zero update 

overhead

Update 
Overhead

Update 
Overhead

Preset Max = 
6

Method

Xuefei Ning @ NICS-efc Lab



FlashDecoding++
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Recomputation for CorrectnessAsync Pipeline for Acceleration
Remove update overhead via preset max value

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.

Fallback to online softmax on overflow detection

Overflow
Fallback

Synchronized partial softmax update

Asynchronized softmax with unified max value

mul1 max exp sum mul2
Attention
N-1

Attention
N+1

mul1 exp mul2Attention
N-1

Attention
N+1

sumunified max value

synchronized update

(b)
partial softmax

asynchronized

mul1 & mul2 refer to
operation !&" in (a)

Under-utilized computation of flat GEMM

Flat GEMM optimization with double buffering

(c)

A B!

padding zeros
A

zero
B!

flat-shape
GEMM

or load A

directly computing

A!B load A’

load A A!B

load A’ A’!B

load A’’ A’’!B

load A’’’ A’’’!B

computation under-utilization

double
buffering

Performance loss to static dataflow

Heuristic dataflow with hardware resource adaption

(d)
GEMM

Flat GEMM

GEMV

GEMM√ Flat GEMM! GEMV!

GEMM! Flat GEMM√ GEMV√

GEMM

Flat GEMM

GEMV

GEMM√ Flat GEMM√ GEMV√

static dataflow 1

static dataflow 2

heuristic
dataflow

Section 3

Section 4

Section 5

Q#K max exp sum A#V
"N-1#
$%

"N+1#
$%

Q#K exp A#V"N-1#
$%

"N+1#
$%

sum
"#$%&'(max)

*+(,-./

partial softmax

012345
67Tensor Core8CUDA Core49:;<=

Async softmax
（Overflow）

Online softmax

Extra overhead Matrix/vector
computations are sequential 

Overflow check: Set threshold 
via preset max à threshold detection

Update 
Overhea

d

Preset Max = 
6

N-
1

N+
1

Leverage value distribution in LLM inference to 
optimize Attention operator[1]Method

N-
1

N+
1

Async Pipeline: Overlap matrix & vector unit usage

Preset max value

Xuefei Ning @ NICS-efc Lab



FlashDecoding++
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Adaptive Tiling + Double BufferingShort-wide Matmul Bottleneck Analysis
Adaptive tiling & double buffering for different shapes

GPU
utilization

B

BK

BN

B’1

B1 B2
B’2

B

BK

BN

B’1

B1 B2
B’2

B4
B’4B’3

B3Tiling 
strategy B

BK

BN

B’1

B1 B2
B’2

B

BK

BN

B’1

B1 B2
B’2

B4
B’4B’3

B3

B

BK

BN

B’1

B1 B2
B’2

B

BK

BN

B’1

B1 B2
B’2

B4
B’4B’3

B3

idleB

BK

BN

B’1

B1 B2
B’2

B

BK

BN

B’1

B1 B2
B’2

B4
B’4B’3

B3

idle

time

B

BK

BN

B’1

B1 B2
B’2

B

BK

BN

B’1

B1 B2
B’2

B4
B’4B’3

B3

Boosts 
GPU 

utilizatio
n

N is large: Low Parallelism
Fine-grained tiling on N-dim for 

sufficient parallelism

N is large: Memory-bound
Double buffering to 
hide access latency

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.

speedup

0

1

N is large: Low Parallelism
Need more tiles

N is large: Memory-bound
Low Comp-to-mem ratio

Optimal BN selection for given N

Leverage typical shapes in LLM inference to 
optimize Matmul operator[1]Method

Xuefei Ning @ NICS-efc Lab



FlashDecoding++
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Leverage Matmul shape patterns in LLM inference for 
dynamic implementation selection[1]

Offline Table building &
Online heuristic selection

Shape Variation Patterns

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.

Observation 2:
Only M dimension 
varies with input
Prefill: M=total token 

count
Decode: M=batch size

Observation 1:
Fixed [N, K] → only 
4 combinations per 

model

Only 4 shape 
categories!

4 shape categories in inference with only M 
dimension varies

Columns: [N, K] combinations

Rows: varying M dim

1:GEMV
Vector-unit based

2: Flat GEMM
Optimized for small

M

3: cuBLAS
General purpose

For each [N, K]
Offline: fine 2 critical 

points per [N, K]
Online: select based 

on M value

Method

Xuefei Ning @ NICS-efc Lab



FlashDecoding++
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Throughput surpasses SOTA by over 10% 
1.88x faster v.s. HuggingFace on average

Comparsion on AMD MI210 GPUThroughput Comparison on NV A100 GPU
1.24x/1.13x faster v.s. vLLM/ TensorRT-LLM 1.86x faster vs vLLM on average

3x

2x

1x

throughput token/s

60

90

120

1.0x

2.2x 2.2x
2.0x

2.3x

40.07

88.4589.25
78.69

98.1993.63

2.5x
115.56

2.9x

FlashDecoding++
TRT-LLMOpenPPLDeepSpeedLightLLMHuggingFace vLLM

*Test setup: L Llama2-7B, bs=1, 128 I/O tokens, single A100 GPU

[1] Ke, Hong, et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchronization, Flat GEMM Optimization, and Heuristics.” Proceedings of Machine Learning and Systems. 2024.

Method

Xuefei Ning @ NICS-efc Lab



Design	Space

2025/11/8

Page 144

AI algorithm

Computation graph and operators

Intermediate representation 
and hardware instructions

Hardware

Software 
Level

Hardware 
Level

• System Design: Framework-level Optimization

Model Framework-level
Optimization

Edge Cloud

Offload Request 
Scheduling

Memory 
Optimization

max. 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡,
s. t. 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ≤ 𝑆𝐿𝑂.

Xuefei Ning @ NICS-efc Lab



Framework-level	Optimization
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Optimizing the system throughput 
adhering to the service-level objective (SLO)

vLLM

（SOSP 23）
Paged KV cache
Basic memory 
management for LLM 
serving
2-4x throughput 
improvement

（OSDI 24）
P/D disaggregated 
system
Specialized optimization 
for P/D instances
Improves effective 
throughput by 4.48x

DistServe

SGLang

（NeurIPS 24）
Prefix caching technique
Reuses repeated KV 
cache across requests
6x throughput 
improvement

Mooncake

（FAST 25 Best 
Paper）
KV cache-centric 
scheduling and storage 
strategy based on a 
disaggregated system 
design

（OSDI 22）
Continuous batching
Basic scheduling 
method for LLM 
inference serving
~10x throughput 
improvement

Orca

Sarathi-Serve

（OSDI 24）
Mixed P/D request 
batching
Basic batching method for 
co-located systems
2x throughput 
improvement

How to schedule?

Request Queue

Prefill (P) Request
Decode (D) Request

Inference Engine: Parallel Strategy
or

Card0

Card1

Card0

Card1

or

batching

User 0
User 1

Send 
Request

Completed 
Requests

Method

Xuefei Ning @ NICS-efc Lab



• Offloading Technique: Definition and Motivation
• Definition: Offloading parts of the model (model weights, KV cache, etc.) from GPU to

other devices (e.g., CPU) for storage or even computation, to save space and improve
computational efficiency

• Motivation: The large volume of model parameters and KV cache data exceeds the
storage capacity of GPU memory

2025/11/8 Page 146

[1] Memory Analysis on the Training Course of DeepSeek Models, Zhang et al. Arxiv Preprint 2502.07486. 

LLaMA2-13B: when the context length reaches 
100k, the required KV cache reaches nearly 82GB, 
exceeding the memory capacity of a single GPU

DeepSeek-V3: parameter size reaches 1250GB

Xuefei Ning @ NICS-efc Lab
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• Offloading Techniques: Categories
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[1] FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU, Sheng et al. Arxiv Preprint 2303.06865.
[2] FastDecode: High-Throughput GPU-Efficient LLM Serving using Heterogeneous Pipelines, He et al. Arxiv Preprint 2403.11421.
[3] https://github.com/kvcache-ai/ktransformers

Offloading Model Weights

Representative Work: FlexGen[1]

Adopt the Zig-zag computation order to 
hide the communication time of weight 
transmission

Offloading KV Cache Offloading Experts

KTransformers offloads experts to 
CPUs (detailed in the next page)

Representative Work: FastDecode[2] Representative Work: KTransformers[3]

Offload KV Cache to CPUs to relieve 
the storage pressure on GPUs 
during the decode phase

Xuefei Ning @ NICS-efc Lab
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• Request Scheduling
• Definition: Scheduling requests in different phases to GPU instances for batched

computation
• Motivation: Requests for LLM inference have varying lengths and distinct phases (Prefill

and Decode phases), and scheduling greatly impacts the performance of inference

Decode：
memory-bound

bottleneck

Prefill:
compute-bound 

bottleneckStatistical distribution of request lengths 
across different datasets

How to perform batch processing for 
requests with varying lengths?

Xuefei Ning @ NICS-efc Lab
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• Request Scheduling: Batching
• Orca (G. Yu et al, OSDI’22) proposes the continuous batching technique, which batches

requests with varying lengths at the TOKEN granularity. Compared to request-level
batching, it improves throughput by 36.9x

Request-level batching
The processing time depends on the longest 

request, leading to low utilization

Request 
1

Request 
2

Request 
3

Request 
4

time axis
Token-level batching (Continuous batching)
Batching requests of different lengths by concatenating 

them in the Token dimension

time axis

Request 
1

Request 
2

Request 
3

Request 
4

[1] G. Yu, et al. ”ORCA: A Distributed Serving System for Transformer-Based Generative Models.”, OSDI, 2022.

Xuefei Ning @ NICS-efc Lab
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• Memory Optimization: PagedAttention
• The growth of KV cache and memory fragmentation limit concurrency, resulting in

suboptimal system throughput.
• vLLM (W. Kwon et al, SOSP’23) proposes PagedAttention,which stores KV cache in a

paged manner. This approach effectively eliminates memory fragmentation, and improves
throughput by 2–4 times.

[1] W. Kwon, et al. ” Efficient Memory Management for Large Language Model Serving with PagedAttention.”, SOSP, 2023.

KV cache in LLM inference grows 
with the generation process

KV cache accounts for a large 
proportion in distributed systems.

Xuefei Ning @ NICS-efc Lab
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• Memory Optimization: PagedAttention
• Memory: KV cache is stored in blocks along the sequence dimension at different

physical addresses.
• Computation: During attention computation, the physical addresses of the corresponding

KV cache are retrieved by looking up a table.

[1] W. Kwon, et al. ” Efficient Memory Management for Large Language Model Serving with PagedAttention.”, SOSP, 2023.

Memory: Logically continuous sequences are stored 
in blocks at actual physical addresses.

Computation: Index the KV cache addresses 
required for computation by looking up a 

table.

Xuefei Ning @ NICS-efc Lab
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Co-located and disaggregated systems for Prefill/Decode have their own 
strengths and weaknesses in computation and storage.

Key 
Problem

Disaggregated Systems"Mooncake, DistServe#Co-located Systems"vLLM, SGLang#

GPU SMs

GPU HBM

Prefill
Requests

Decode
Requests

GPU
SMs

GPU 
HBM

Prefill
Requests

GPU
SMs

GPU 
HBM

Decode
Requests

KV 
cache

[1] W. Kwon, et al. ” Efficient Memory Management for Large Language Model Serving with PagedAttention.”, SOSP, 2023.
[2] L. Zheng, et al. “SGLang: Efficient Execution of Structured Language Model Programs”, NeurIPS, 2024.
[3] R. Qin, et al. “Mooncake: Trading More Storage for Less Computation”, FAST, 2025.
[4] DeepSeek Team. “DeepSeek-V3 Technical Report”. arXiv, 2024.

Computatio
n Fusion

Storage 
Fusion

Single Fused Instance
Both the Prefill and Decode stages 

of a request are computed and 
stored within the same instance.

Representative 
Frameworks

Computation 
Separation

Storage 
Separation

Prefill Instance
+Decode Instance
After a request is completed in 

the Prefill instance, the KV 
cache is transmitted to the 

Decode instance for computation.

Representative 
Frameworks

Xuefei Ning @ NICS-efc Lab
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Co-located and disaggregated systems for Prefill/Decode have their own 
strengths and weaknesses in computation and storage.

Co-located Systems"vLLM, SGLang#

GPU SMs

GPU HBM

Prefill 
Requests

Decode 
Requests

[1] W. Kwon, et al. ” Efficient Memory Management for Large Language Model Serving with PagedAttention.”, SOSP, 2023.
[2] L. Zheng, et al. “SGLang: Efficient Execution of Structured Language Model Programs”, NeurIPS, 2024.

Mixed 
computation

Shared
Storage

Single Instance

Both the Prefill and Decode phases 
of a request are computed and 

stored within the same instance. Requests at different phases wait 
for each other

request 1/2/4 request 
3/5

Prefill Requests Decode 
Requests

Computational resources 
scheduled by the compiler

request 1/2/3/4/5

Mixed batching of requests

Computational Disadvantages
Resource contention and latency 

interference between P and D 

Storage Advantages
No need to transfer KV cache 
between P and D → High HBM 

utilization

Representativ
e Frameworks

Key 
Problem

Xuefei Ning @ NICS-efc Lab
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Co-located and disaggregated systems for Prefill/Decode have their own 
strengths and weaknesses in computation and storage.

Disaggregated Systems"Mooncake, DistServe#

[1] R. Qin, et al. “Mooncake: Trading More Storage for Less Computation”, FAST, 2025.
[2] DeepSeek Team. “DeepSeek-V3 Technical Report”. arXiv, 2024.

GPU
SMs

GPU 
HBM

Prefill 
Requests

GPU
SMs

GPU 
HBM

Prefill 
Requests

KV 
cache

Isolated
Computation

Isolated
Storage

Prefill Instance + Decode 
Instance (P/D Instances)

After a request is completed in 
the Prefill instance, the KV 
cache is transmitted to the 

Decode instance for 
computation.

The P 
instance 

sends away 
KV cache.

The D 
instance 

stores KV 
cache for long.

Storage Imbalance
D Instance 

1
P Instance 

1

D Instance 
2

KV cache

Instance switching requires 
transferring KV cache

switc
h

Storage Disadvantage
Transmission overhead, storage 

imbalance, and more...

Computational 
Advantage

Isolated computation between P 
and D, with no latency 

interference.

Representativ
e Frameworks

Key 
Problem

Xuefei Ning @ NICS-efc Lab
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Combine the computational advantage of disaggregated systems and 
the storage advantage of co-located systems[1]Method

[1] Ke, Hong, et al. ”semi-PD: Towards Efficient LLM Serving via Phase-wise Computation Disaggregation and Unified Storage." arXiv preprint arXiv:2504.19867. 2025.

Computation Disaggregation & Storage Unification: P/D computing resources are 
isolated, but storage resources are shared

GPU HBM

Prefill 
Requests

Decode
Requests

GPU SMs
Isolated

Computation

Shared
Storage

Computational Advantage
P/D isolated computation with no 

latency interference.

Storage Advantage
No need to transfer KV cache 
between P/D; High storage 

utilization of HBM.

P/D computing resources are isolated 
and divided into different processes

but share the same storage resources

Xuefei Ning @ NICS-efc Lab
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Combine the computational advantage of disaggregated systems and the 
storage advantage of co-located systems[1]

Low-Overhead Resource Adjustment MechanismIsolated Computation and Shared Storage via IPC

[1] Ke, Hong, et al. ”semi-PD: Towards Efficient LLM Serving via Phase-wise Computation Disaggregation and Unified Storage." arXiv preprint arXiv:2504.19867. 2025.

P/D uses asynchronous processes to achieve 
computation resource isolation at the SM level.

request 0/1/4

request 2/3
Prefill Process

Decode Process

Storag
e Decode 

Requests

Prefill 
RequestsAtomic 

Memory 
Allocation

Atomic memory allocation is used to avoid 
Write-After-Read (WAR) conflicts.

GPU
SMs

request 1/2/4

request 3/5

Computation Resource 
Allocation Adjustment
Reload + Copy

Reload + Copy

request 
1/2/4

request 3/5

Resident process (broadcasting storage address for new process)

request 1/2/4

request 3/5

request 
1/2/4

request 3/5

Prefill Process

Decode Process

Prefill Process

Decode Process

Before

Resident processes manage weights and KV cache storage, 
eliminating the need for reloading and copying.

Isolated
Computation

Shared
Storage After

Method

Xuefei Ning @ NICS-efc Lab
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Llama3 series models: 1.55-1.72x improvement in request service rate under 
given SLOs DeepSeek-V3 model: 1.49-2.58x reduction in latency

Cluster-Level InferenceInstance-Level Inference

[1] Ke, Hong, et al. ”semi-PD: Towards Efficient LLM Serving via Phase-wise Computation Disaggregation and Unified Storage." arXiv preprint arXiv:2504.19867. 2025.

Lower Time To First Token (TTFT) and Time Per Output Token (TPOT).

Llama3-70B, ShareGPT, FP16, 4xA100 (vLLM, semi-PD), 8xA100 (DistServe)

DeepSeek-V3, FP16, MATH-500, 8xH200

vLLM-S: vLLM + SplitFuse
vLLM-D: Default

semi-PD instances collectively participate in request routing.

xPyDzS: x Prefill instances, y Decode instances, z semi-PD instances, 
implemented based on NVIDIA Dynamo!baseline", DeepSeek-V2-
Lite model, single A100 per instance

Significant reduction in TTFT/TPOT achieved after replacing 1 
Prefill instance and 3 Decode instances with 4 semi-PD instances.

Result

Xuefei Ning @ NICS-efc Lab



Design	Space

2025/11/8

AI algorithm

Computation graph and operators

Intermediate representation 
and hardware instructions

Hardware

Software 
Level

Hardware 
Level

• System Design: Hardware-level Optimization

Model

Xuefei Ning @ NICS-efc Lab

Principle of Sparse Computing

Dense computing + High-end hardware

Sparse computing + Low-end hardware

High-end hardware (4 Units)

Duration!
3 cycles

1.3×
Performance 

Gain

Low-end hardware(2 Units)

Duration!
4 cycles
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Video generation is one of the important modalities, 
and it is a promising path towards as the physical world’s simulators

OpenAI’s Sora model Follow-ups by major technology firms

Source![1] OpenAI" https://openai.com/index/sora/

Google

Kuaishou

ByteDance

Videos generated 
by Sora are almost 
indistinguishable 
from real ones.[1]
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VGMs are mainly based on diffusion transformers, 
composed of noising and denoising process

The structure of VGMs

At present, most of the mainstream video generation 
models adopt the Diffusion Transformer (DiT) architecture[1]

Diffusion

The principle is to endow the model with the ability to 
generate videos through multiple rounds of noise 

superposition and denoising training.
Source![1] Scalable diffusion models with transformers"ICCV 2023.

Forward diffusion (backward propagation):
Gradually add Gaussian noise of different amplitudes

Reverse diffusion (inference): Denoise gradually
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Different from LLMs, the inference bottleneck of video generation models 
(VGMs) has shifted from memory-bound to compute-bound

LLMs VGMs

LLMs
(mainly considering the 

decode stage)

VGMs
(Temporal, spatial, 
and FFN structure)

Computation* ≈ 12𝑑: + 2𝑁𝑑 ≈ 16𝐹𝑁𝑑:
+ 2𝐹𝑁(𝐹 + 𝑁)𝑑

Memory 
access* ≈ 12𝑑: + 2𝑁𝑑 ≈ 16𝑑:

+ 15𝐹𝑁𝑑
Operational 
intensity (OI) ≈ 𝟏 ≈ 𝑭𝑵

F: Video frames. N: Tokens. d: Hidden dimension.
*Calculation of a single block/layer.
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Source![1] https://medium.com/videocoin/the-history-of-video-codecs-infographic-432e5be1154f.

H.261 [1988]
First modern and 
useful codec, max 

resolution 352*288

MPEG-1 [1993]
Compressed video 
making video CDs 

possible

H.262/MPEG-2 [1995]
Developed for TV 

broadcasts and DVD-
Video playback, max 

resolution 1920*1080

H.263 [1996]
Low-bandwidth 

standard used for the 
internet

H.264/MPEG-4 [1996]
The most used video 

codec today, max 
resolution 
4096*2048

H.265/HEVC [2013]
Further reduce the 
video size, enables 

technologies such as 
AR and VR [1]

1000x size compression and overhead reduction!
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Video Compression

Unimportant

Important

DCT
(Discrete Cosine 

Transform)

Video with 
small size

Generated 
video

Video Generation Unimportant
(INT8)Important

(FP16)

1. Activation sparsification 2. Hybrid precision quantization
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For linear-heavy video generation models, we propose FlightVGM, a HW-SW 
co-design with temporal-spatial & floating-fixed strategies

Ø Attention dominated! resolution ↑ or dim.↓
Ø Linear dominated!resolution↓ or dim.↑

Fra
me1

2
Token
2 T

To

Token
3

Token
4

Token
1

Token
2

Only
4    !

Spatial-temporal
compression

Frame

Token
skip

skip skip skip

1 2 3 4
1

2

Similarity

DSP-Expansion
(DSP-E)

Floating-point
computation

(e.g., linear)

DSP-E
(INT8 mode) DSP (scalar)

Max
DSP-E

(FP16 mode)

Fixed-point
computation
(e.g., attention)

Sparse Computing + Configurable Design
→ Higher Performance
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To address the computational redundancy problem in VGMs, a 
temporal-spatial joint sparse method is proposed

Mining Similarities by GroupingUtilize Inter/Intra-frame Similarity

T. 3
T. 2

Step-1: Inter-frame sparsification 

Step-2: Intra-frame sparsification

T. 1
T. 2
T. 3
T. 4 F. 1

F. 2
F. 3

T. 1
F.3F.2F.1
0.520.03

Ref.
frame

0.620.98
0.360.96
0.990.63

Ref. tokenT.0
0.7900.99T.1
0.9700.22T.2
00.980.57T.3

F. 3F. 2F. 1

Similarity Table-1 

Similarity Table-2 

T. 4 T. 4

T. 2
T. 1

T. 3F. 2
F. 3

F. 1

Additional cost can be ignored
(6𝑇𝑁𝒅 vs. 𝑇𝑁𝒅𝟐), 𝑑=1152

[1] Liu J, Zeng S, Ding L, et al. Flightvgm: Efficient video generation model inference with online sparsification and hybrid precision on fpgas[C]//Proceedings of the 2025 ACM/SIGDA International Symposium 
on Field Programmable Gate Arrays. 2025: 2-13.

Main 
Method
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A DSP58 extension architecture is proposed to enhance 
utilization under mixed-precision computing

Expanded Architecture based on DSP IPFloating and Fixed Hybrid Architecture

! = #×%! + '!, ) = #×%" + '"
INT8 mode

*

*

*, + = ,!, ," ×
-!! -!"
-"! -"" + .!, ."

INT8
MUL

AlignmentMax

INT6
ADD

INT8
MUL

EXP
Align

DSP58
A
B
C

P

Max Normalization
X, Y

_.frac

_.exp INT
ADD
INT
ADD

INT8
MUL

AlignmentMax

INT6
ADD

INT8
MUL

EXP
Align

DSP58
A
B
C

P

Max Normalization

x, y
INT
ADD
INT
ADD

FP16 mode

[1] Liu J, Zeng S, Ding L, et al. Flightvgm: Efficient video generation model inference with online sparsification and hybrid precision on fpgas[C]//Proceedings of the 2025 ACM/SIGDA International Symposium 
on Field Programmable Gate Arrays. 2025: 2-13.

Main 
Method

FP16 mode 
(2 floating-point MACs)

INT8 mode 
(4 floating-point MACs)
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n Models and datasets
n Models!Latte-1 and Open-Sora 1.2
n Datasets!UCF-101

n Metrics
n CLIPSIM: Text-Video Alignment 
n VBench: Video quality

n Baseline
n Generic hardware: NVIDIA 3090 GPU
n FPGA-based accelerator for Transformer: HiSpMV[FPGA’24] and

FlightLLM[FPGA’24]
n ASIC-based accelerator for DiT: InterArch[DAC’24] and CMC[ASPLOS’24] 
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With 21× lower peak compute than the NVIDIA 3090, FlightVGM achieves 
1.3× higher speedup and 4.5× better energy efficiency

Video generated by original model

[1] Liu J, Zeng S, Ding L, et al. Flightvgm: Efficient video generation model inference with online sparsification and hybrid precision on fpgas[C]//Proceedings of the 2025 ACM/SIGDA International Symposium 
on Field Programmable Gate Arrays. 2025: 2-13.

Video generated by efficient model



Menu	of	Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model-
level

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Efficient Output Decoding
• Speculative Decoding
• Jacobi Decoding
• Agentic Generation

Input Compression
• Input Compression

Alternative Generative Paradigms
• Diffusion for Text

System-
level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.
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Speculative	Decoding:	Concepts
● Recall: autoregressive decoding of LLMs

- Decoding stage: memory bound (data transfer of model weights & KV cache)
- Redundant computation is left unused!

LLM

User Prompt

T1

T1 T2

T2 …

T3

T3

Decoding stage

Auto-regressive decoding
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Speculative	Decoding:	Concepts
● Core idea of speculative decoding

- Use a small draft model to generate multiple token for verification
- The LLM conducts parallel verification (memory bound allows more computation)
- Key elements: 1) the acceptance rate of generated tokens; 2) the cost of draft model

[1] Leviathan, Yaniv, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. ICML 2023.

Draft Model

T1 T2 T3

T1 T2 T3 T4

LLM

T1 T2 T3 T4

T1 T2 T3 T4Context

Context

Context

Context

Parallel verificationAuto-regressive decoding
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Speculative	Decoding:	Demo
● Demo from [1]

- Green: accepted tokens
- Red: rejected tokens
- Blue: corrected tokens

[1] Leviathan, Yaniv, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. ICML 2023.
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Speculative	Decoding:	Speed-up	Estimation
● The speed-up rate of speculative decoding (SD) can be estimated!

- S: the total number of tokens
- R: the number of SD rounds
- γ: the number of generated tokens in each SD round

[1] Sadhukhan, Ranajoy, et al. Magicdec: Breaking the latency-throughput tradeoff for long context generation with speculative decoding. ICLR 2025.
[2] Huang, Zongle, et al. MoESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE. arXiv preprint arXiv:2505.19645 (2025).

① ② ③

② The cost of multi-token verification. A large batch size B is harmful to speed-up rate

① The relative latency of draft model to the target model

③ The negligible cost of token sampling for the rejected tokens
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Speculative	Decoding:	Representative	Works
● How to find an good draft model?

- consistent with the target model
- efficient in decoding

[1] Tianle Cai, et. al. Medusa: Simple llm inference acceleration framework with multiple decoding heads. ICML 2024.
[2] Yuhui Li, et. al, EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty, ICML 2024
[3] Mostafa Elhoushi, et. al. LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding, arXiv preprint, 2024
[4] Deepseek Team. DeepSeek-V3 Technical Report. 

23-9: Medusa [1] 24-10: LayerSkip [3]24-1: Eagle [2] 24-12: DeepSeek-V3 [4]

[Draft model] Independently 

trained multi-layer decoders

[Draft model] A single transformer 

layer taking the output from LLM

[Draft model] The first a few 

layers of the LLM itself

[Draft model] Independent multi-layer 

perception pre-trained together with DS-V3
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Speculative	Decoding:	Eagle
Drat model: a single transformer layer 
- # params: 0.25B ~ 1B 
- # training data: 1B tokens
- Acceptance rate: 75%

Tree attention: more tokens per pass
- Verify more tokens per pass
- E.g., 12 tokens (4 paths)

[1] Yuhui Li, et. al, EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty, ICML 2024
[2] Yuhui Li, et, al, Eagle-2: Faster inference of language models with dynamic draft trees. EMNLP 2024
[3] Yuhui Li, et. al, EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test, arXiv preprint 2503.01840.
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Speculative	Decoding:	Multi-Token	Prediction
● Multi-Token Prediction (MTP): trained from scratch with the LLM backbone

[1] Deepseek Team. DeepSeek-V3 Technical Report. 
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Speculative	Decoding	for	MoE Architectures
● SD is hard to tackle MoE:

● MoE does not favor small batch: Additional memory costs to load experts
● SD does not favor large batch: SD is beneficial for memory-bound systems

● SD + MoE is helpful under medium batch size
● The number of activated experts saturates, but does not reach compute-bound

[1] Huang, Zongle, et al. MoESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE. NeurIPS 2025 spotlight.
Page 178



Menu	of	Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model-
level

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Efficient Output Decoding
• Speculative Decoding
• Jacobi Decoding
• Agentic Generation

Input Compression
• Input Compression

Alternative Generative Paradigms
• Diffusion for Text

System-
level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.
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Jacobian	Decoding

[1] https://lmsys.org/blog/2023-11-21-lookahead-decoding/

Drawbacks of speculative decoding
• Low acceptance rate, decoding time etc.
• A draft model needs to be separately trained and paired with the target LLM

Jacobian decoding: 
A single LLM without 
the draft model
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Lookahead	Decoding

[1] https://lmsys.org/blog/2023-11-21-lookahead-decoding/
Page 181

“Lookahead”: reuse the promising draft from past N-gram trajectories



Lookahead	Decoding

[1] https://lmsys.org/blog/2023-11-21-lookahead-decoding/

Lookahead branch 
maintains a fixed-sized, 2D 
window to generate n-grams 
from the Jacobi iteration 
trajectory.

Verification branch selects 
and verifies promising n-gram 
candidates.
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Skeleton-of-Thought	(SoT)

SoT in practice: A router to classify queries (SoT-R)

• Skeleton Stage: Guide the LLM to output a 
concise skeleton of the answer

• Point-expanding Stage: Guide the LLM to 
expand on each point from the skeleton in 
parallel

• Achieve up to 2.39x end-to-end speed-up

[1] Ning, Xuefei*, Zinan Lin*, et. al., ”Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation." ICLR 2024.

SoT: LLM generates the skeleton autoregressively, and then each points in parallel
(an attempt in agentic generation for efficiency)
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• Jacobi Decoding
• Agentic Generation

Input Compression
• Input Compression

Alternative Generative Paradigms
• Diffusion for Text

System-
level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.
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● Prompt compression: eliminate redundant tokens in the prompt

Prompt	Compression
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[1] Li Y, Dong B, Guerin F, et al. Compressing Context to Enhance Inference Efficiency of Large Language Models. EMNLP, 2023.

1. Identify the token importance

2. Group tokens to units

3. Sort units in the descending order

4. Keep units above the threshold

Selective Context: filter out redundant tokens to shorten the input prompt



LLMLingua

[1] Huiqiang Jiang, et al. RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation. EMNLP, 2023.

Compress the prompt with an small language model, with an reduction rate up to 20x.

0. Distribution alignment
Instruction tuning of small LLM

1. Budget controller
Calculate the token-wise perplexity and 
sort in the descending order

2. Iterative prompt compression
Group tokens into segments to ensure 
their dependency, and compute 
segment-wise perplexities
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LLMLingua-2

A better way to construct training data for the compressor: instructed by GPT-4

[1] Pan Z, Wu Q, Jiang H, et al. Llmlingua-2: Data distillation for efficient and faithful task-agnostic prompt compression[J]. arXiv preprint arXiv:2403.12968, 2024.

Page 188



AutoCompressor

The LLM learns to summarize history context given the instruction <summary_token>

<summary_token>: A new token to tell the 
LLM to summarize the context

The LLM will generate summarized history

The context only consists of summary tokens

[1] Chevalier A, Wettig A, Ajith A, et al. Adapting Language Models to Compress Contexts. EMNLP, 2023.
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RECOMP

Abstractive Compressor: summarize text from the documents
Extractive Compressor: extract text from the documents

● Prompt compression for RAG systems
● Otherwise, the retrieved documents can be extremely long

Ultra-long context!
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Context	Folding	for	Agentic	AI

Page 191

● Context Folding: prompt compression for Agentic AI
● Deep research, coding agent, etc.

[1] https://openhands.dev/blog/openhands-context-condensensation-for-more-efficient-ai-agents

Key idea: A LLM to summarize the history 
whenever the context reaches some threshold



Context	Folding	for	Agentic	AI
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● Context Folding: prompt compression for Agentic AI

[1] Weiwei Sun, et al. Scaling Long-Horizon LLM Agent via Context-Folding. arXiv,2510.11967.

1. Learn to create, solve and 
summarize sub-tasks

2. Reduce the output context 
from sub-task result

3. SFT/RL training to enable 
the ability to fold context

4. Context reduction 10x
without accuracy drop on 
SWE & BrowseComp



Menu	of	Techniques

Algorithm-
level

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model-
level

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Efficient Output Decoding
• Speculative Decoding
• Jacobi Decoding
• Agentic Generation

Input Compression
• Input Compression

Alternative Generative Paradigms
• Diffusion for Text

System-
level

Operator-Level Opt.

Framework-Level Opt.

Hardware-Level Opt.
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Diffusion	Language	Models

Page 194

Completion Infiliing

Any other solutions? —— Don’t use the autoregressive model?
—— To fully parallelized input & output, diffusion language models

[1] Jiacheng Ye, et al. Dream 7B: Diffusion Large Language Models. arXiv preprint, 2508.15487.



● Autoregressive modeling v.s. Diffusion modeling

Diffusion	Language	Models

[1] Jiacheng Ye, et al. Dream 7B: Diffusion Large Language Models. arXiv preprint, 2508.15487.
[2] Shen Nie, et al. Large Language Diffusion Models. NeurIPS 2025.
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● Inference latency of diffusion models

Diffusion	Language	Models
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Tutorial	Review
● Motivation: Scaling up model / data / computation based on Transformer is the

mainstream and effective pathway for stronger generative AI till now. The
scaling up of the model size and input & output cause efficiency issues.

● Preliminary:
● Most LLMs use autoregressive model as the generative modeling method, the

transformer architecture, in which the attention operation is a core mechanism.
● We introduce basic concepts of software, hardware system, device, chip,

microarchitecture, and the interface between software & hardware – instruction.
● AI inference is seen as forwarding data on a computational graph, where each node

represents a single operator, edge represents dependency. Operators are translated
to instructions. Hardware execute instructions.
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Tutorial	Review
● Problem Definition: Usually, latency, memory, energy consumption and

throughput will be the ultimate objective or constraint on “efficiency”. In the
meantime, the intelligence level of AI needs to be retained.

● Measured metrics are actually tested on platform (thus is platform-related), and
directly correspond to the objectives / constraints.

● Proxy metrics are estimated with only model specification. In practice, they are
useful in diagnosis of the bottleneck and estimation of measured metrics.

● Practical Pipeline: We can estimate bottleneck modules and overall objectives,
whether each module is compute or memory bound using some simple method
(e.g., roofline model), then we can actually profile them (NVIDIA GPU: Nsight
system & compute). Finally, we design method accordingly.
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Tutorial	Review
Optimization Ideas

Efficient Output Decoding
parallel generation, verification, or 

refinement strategies 

Input Compression
prompt compression, RAG

Alternative Generative 
Paradigms

Model Compression
reduce model redundancy in a 

static manner

Dynamic Inference
reduce model redundancy in a 

dynamic manner

Structure Design
design novel structure, which often 

require training

Operator-Level Opt.

Framework-Level Opt.

• Model Structure (e.g., #layer, #channel)
• Value Representation (e.g., low-bit 

representation)

Optimization Space

There is no representation/space or 
optimization formalization general
to many work. The design of these 
methods directly change a core application 
or algorithm property to improve efficiency.

• Computational Graph (e.g., fusion)
• Kernel Implementation
• Request scheduling, resource 

management, model placement
• Framework Implementation

Techniques
Idea 1: Parallelize the sequential 

sampling of existing model?

Idea 2: Compress the input 
context to shorter one?

Idea 3: Don’t use autoregressive 
model?

Algori-
thm

modify the 
algorithm

Idea 1: Remove redundant 
params/acts/computation? 

Static (model compression) or 
dynamic (dynamic inference)

Idea 2: Design novel 
lightweight structure (e.g., 

efficient FFN & attention)

Model
modify the

model

Focus 1: compiler/runtime 
lib/hardware for efficient NN 

execution
Focus 2: request scheduling / 

resource management for 
service-level objectives

System
modify the 
software

Hardware-Level Opt. • Hardware Implementation
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Future	Directions
● Application Requirements

● Long context (e.g., for complex reasoning)
● Multi-modality input/output
● Multi-model agentic application

● Recent Active Directions
● Algorithm-level

● Agentic generation (multi-agent collaboration)
● Agent context engineering

● Model-level
● Latent reasoning
● Efficient architecture design

● System-level
● Agent infrastructure
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Future	Directions

Data-mixture of QAT

Efficient agentic LLMs Efficient context engineering

RL with quantization

The off-policy effect by 
quantization

Compression of reasoning models

New format: MXFP4 or NVFP4?

Training objectives v.s. LLM origins

Higher precision

Hardware-friendly algorithms

Higher compression rate: lower bits

…
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Thank You !

Xuefei Ning1, Guohao Dai2,4, Haoli Bai3, Lu Hou3, Yu Wang1, Qun Liu3

1Tsinghua University 2Shanghai Jiao Tong University 3Huawei 4Infinigence-AI

Tutorial Website
https://haolibai.github.io/emnlp-2025-tutorial-efficiency/

https://haolibai.github.io/emnlp-2025-tutorial-efficiency/

