

Few Shot Network Compression via Cross Distillation

Haoli Bai¹, Jiaxiang Wu², Irwin King¹, Michael Lyu¹

{*hlbai*, king, lyu}@cse.cuhk.edu.hk, jonathanwu@tencent.com ¹The Chinese University of Hong Kong, ²Tencent AI Lab

Introduction

Most prevalent network compression methods require fine-tuning with sufficient training data to ensure accuracy, which could be challenged by privacy and security issues. Network compression with few shot training instances is a new direction for research.

Our Work: We propose cross distillation, a novel network compression approach specialized for few shot training samples. The proposed method offers a general framework compatible with pruning or quantization.

Methods					
Overall Framework	Combination with Pruning/Quantization				
\Box Task Definition Civen an ever perspectorized teacher petwork τT our goal is to learn a	We adopt proximal mapping update for different $\mathcal{R}(\mathbf{W}^S)$				
compact student network \mathcal{F}^S . We proceed in a layer-wise manner:	$\mathbf{W}_{t+1}^{S} = \operatorname{Prox}_{\lambda \mathcal{R}}(\mathbf{W}_{t}^{S} - \eta \nabla \tilde{\mathcal{L}}(\mathbf{W}_{t}^{S})) \in R^{c_{o} \times c_{i} \times k \times k}$				
	C Structured Druping				

 $\mathbf{W}^{S}_{*} = \arg\min_{\mathbf{W}^{S}} \frac{1}{N} \mathcal{L}^{r}(\mathbf{W}^{S}) + \lambda \mathcal{R}(\mathbf{W}^{S}),$ where $\mathcal{L}^r(\mathbf{W}^S) = \|\sigma(\mathbf{W}^T * \mathbf{h}^T) - \sigma(\mathbf{W}^S * \mathbf{h}^S)\|_F^2$ is the **estimation** error, and $\mathcal{R}(\mathbf{W}^S)$ is some regularization for sparsity/quantization.

 \checkmark Fewer training samples \rightarrow larger estimation errors;

Estimation errors accumulate and propagate layer-wisely.

Cross Distillation (a) Layer-wise distillation (b) Correction (d) Soft cross distillation (c) Imitation (b) Correction loss – reduce the historically accumulated errors $\mathcal{L}^{c}(\mathbf{W}^{S}) = \|\sigma(\mathbf{W}^{T} * \mathbf{h}^{T}) - \sigma(\mathbf{W}^{S} * \mathbf{h}^{T})\|_{F}^{2}$ (c) Imitation loss – teacher-aware accumulated errors on student $\mathcal{L}^{i}(\mathbf{W}^{S}) = \|\sigma(\mathbf{W}^{T} * \mathbf{h}^{S}) - \sigma(\mathbf{W}^{S} * \mathbf{h}^{S})\|_{F}^{2}$ (d) Soft cross distillation – a trade-off $\hat{\mathcal{L}}(\mathbf{W}^S) = \|\sigma(\mathbf{W}^T * \hat{\mathbf{h}}^T) - \sigma(\mathbf{W}^S * \hat{\mathbf{h}}^S)\|_F^2$

(*) Convex combination between (b) and (c) – another trade-off

Suucuieu Fiunng

 $\mathcal{R}(\mathbf{W}^{S}) = \|\mathbf{W}^{S}\|_{2,1} = \sum_{i} \|\mathbf{W}_{i}^{S}\|_{2}$ $\operatorname{Prox}_{\lambda \|\cdot\|_{2}}(\mathbf{W}_{i}^{S}) = \max(1 - \frac{\lambda}{\|\mathbf{W}_{i}^{S}\|_{2}}, 0) \cdot \mathbf{W}_{i}^{S}$

Unstructured Pruning

$$\mathcal{R}(\mathbf{W}^{S}) = \|\mathbf{W}^{S}\|_{1} = \sum_{i,j,h,w} |W_{ijhw}^{S}|$$

$$\operatorname{Prox}_{\lambda\|\cdot\|_{1}}(W_{ijhw}^{S}) = \begin{cases} W_{ijhw}^{S} - \lambda & W_{ijhw}^{S} > \lambda \\ 0 & |W_{ijhw}^{S}| \le \lambda \\ W_{ijhw}^{S} + \lambda & W_{ijhw}^{S} < -\lambda \end{cases}$$
Quantization
$$\mathcal{R}(\mathbf{W}^{S}) = \prod_{Q}(g(\mathbf{W}^{S})) \quad \mathcal{Q} = \{0, \frac{\pm 1}{2^{B-1}-1}, \frac{\pm 2}{2^{B-1}-1}, ..., \pm 1\}$$

 $\operatorname{Prox}_{\Pi_Q}(W_{ijhw}^{\mathcal{S}}) = 0$ if $W_{ijhw}^{\mathcal{S}} \in Q$ else ∞

----- Theoretical Analysis

Theorem 1. Suppose both \mathcal{F}^T and \mathcal{F}^S are L-layer convolutional neural networks followed by the un-pruned softmax fully-connected layer. If the activation functions $\sigma(\cdot)$ are Lipchitz-continuous such as ReLU(), the gap of softmax cross entropy \mathcal{L}^{ce} between the network logits $\mathbf{o}^T = \mathcal{F}^T(\mathbf{x})$ and $\mathbf{o}^{S} = \mathcal{F}^{S}(\mathbf{x})$ can be bounded by

 $|\mathcal{L}^{ce}(\mathbf{o}^{T};\mathbf{y}) - \mathcal{L}^{ce}(\mathbf{o}^{S};\mathbf{y})| \le C\tilde{\mathcal{L}}_{L} + \sum \prod C_{k}^{'}(\mu)\tilde{\mathcal{L}}_{l}, \quad (6)$ l=1 k=l

$\tilde{\mathcal{L}} = \mu \mathcal{L}^c + (1 - \mu) \mathcal{L}^i, \quad \mu \in [0, 1]$

where C and $C'(\mu)$ are constants and $C'(\mu)$ is linear in μ .

Experiments

Main Results

Further Analysis -----

Structured Pruning with ResNet-34 on ImageNet

Methods	50	100	500	1	2	3
L1-norm	$72.94_{\pm 0.00}$	$72.94_{\pm 0.00}$	$72.94_{\pm 0.00}$	$72.94_{\pm 0.00}$	$72.94_{\pm 0.00}$	$72.94_{\pm 0.00}$
FSKD	83.10 ± 1.86 82.53 ± 1.52	84.52 ± 1.29 84.58 ± 1.13	$86.67_{\pm 0.78}$	87.08 ± 0.73	$87.23_{\pm 0.52}$	87.29 ± 0.56 87.20 ± 0.43
FitNet	$86.86_{\pm 1.81}$	$87.12_{\pm 1.63}$	$87.73_{\pm 0.96}$	87.66 ± 0.84	$88.61_{\pm 0.76}$	$89.32_{\pm 0.78}$
ThiNet	$85.67_{\pm 1.57}$	$85.54_{\pm 1.39}$	$86.97_{\pm 0.89}$	$87.42_{\pm 0.76}$	87.52 ± 0.68	87.53 ± 0.50
CP	$86.34_{\pm 1.24}$	$86.38_{\pm 1.37}$	$87.41_{\pm 0.80}$	88.03 ± 0.66	87.98 ± 0.49	$88.21_{\pm 0.37}$
Ours-NC	$86.51_{\pm 1.71}$	$86.61_{\pm 1.20}$	87.92 ± 0.75	87.98 ± 0.60	88.63 ± 0.49	88.82 ± 0.38
Ours	$86.95_{\pm 1.59}$	87.60 ± 1.13	$88.34_{\pm 0.69}$	88.17 ± 0.73	88.57 ± 0.40	88.59 ± 0.41
Ours-S	$87.42_{\pm 1.69}$	$87.73_{\pm 1.17}$	$88.60_{\pm 0.82}$	$88.40_{\pm 0.61}$	$88.84_{\pm 0.48}$	88.87 ± 0.35
	• -					

Unstructured Pruning with VGG-16 on ImageNet

Methods	50	100	500	1	2	3
L1-norm BP FitNet	$\begin{array}{c} 0.5 _{\pm 0.00} \\ 42.87 _{\pm 2.07} \\ 52.66 _{\pm 2.93} \end{array}$	$\begin{array}{c} 0.5 {\scriptstyle \pm 0.00} \\ 48.78 {\scriptstyle \pm 1.43} \\ 57.09 {\scriptstyle \pm 2.14} \end{array}$	$0.5_{\pm 0.00}\ 65.47_{\pm 1.15}\ 76.59_{\pm 1.45}$	$\begin{array}{c} 0.5 {\scriptstyle \pm 0.00} \\ 71.25 {\scriptstyle \pm 0.97} \\ 80.14 {\scriptstyle \pm 1.23} \end{array}$	$\begin{array}{c} 0.5 _{\pm 0.00} \\ 74.85 _{\pm 0.71} \\ 82.27 _{\pm 0.70} \end{array}$	$\begin{array}{c} 0.5 {\scriptstyle \pm 0.00} \\ 76.04 {\scriptstyle \pm 0.48} \\ 83.14 {\scriptstyle \pm 0.51} \end{array}$

Weight Quantization with ResNet-56 on Cifar-10

	K	=1	K=5		
	W2A32	W4A32	W2A32	W4A32	
Ours-NC	$72.48_{\pm 1.94}$	85.75 ± 0.96	$84.67_{\pm 1.89}$	91.09 ± 0.37	
Ours	$80.92_{\pm 2.23}$	$90.42_{\pm 0.53}$	$86.11_{\pm 1.97}$	$91.23_{\pm 0.45}$	

84